Class: $\mathbf{1}^{\text {st }}$

Problem 6
The $450-\mathrm{kg}$ uniform I-beam supports the load shown. Determine the reactions at the supports

Solution

From $\quad \Sigma F_{x}=0, \quad A_{x}=0$

$$
\begin{aligned}
\Sigma M_{A}=0: & -450(9.81) 4-220(9.81)(5.6) \\
& +B_{y}(8)=0, \quad B y=3720 \mathrm{~N} \\
\Sigma F_{y}=0: & A_{y}-450(9.81)-220(9.81)+3720=0 \\
& A_{y}=2850 \mathrm{~N}
\end{aligned}
$$

Problem 7

Determine the force magnitude P required to lift one end of the 250 kg crate with the lever dolly as shown. State any assumptions.

Solution

$$
\begin{gathered}
\sqrt{+} \sum M_{0}=0: P(1500)-\frac{1}{2}(250)(9.81)(275)=0 \\
\\
P=225 \mathrm{~N}
\end{gathered}
$$

Problem 8

To facilitate shifting the position of a lifting hook when it is not under load, the sliding hanger shown is used. The project ions at A and B engage the flanges of a box beam when a load is supported, an d the hook projects through a horizontal slot in the beam. Compute the forces at A and B when the hook supports a $300-\mathrm{kg}$ mass.

Solution

$$
\begin{aligned}
& W=300(9.81)=2943 \mathrm{~N} \\
& \Sigma M_{A}=0 ; 2943(0.4)-B(0.6)=0 \\
& B=1962 \mathrm{~N} \text { or } 1.962 \mathrm{kN} \\
& \Sigma F=0 ; \quad A=2943+1962 \\
& =4910 \mathrm{~N} \text { or } 4.91 \mathrm{kN}
\end{aligned}
$$

Problem 9

The uniform beam has a mass of 50 kg per meter of length. Compute the reaction s at the support O . The force loads shown lie in a vertical plane.

Solution

$$
\begin{aligned}
& \text { (9.2)(9.81) kN } \\
& \Sigma F_{x}=0: \quad O_{x}+1.4 \sin 30^{\circ}=0 \\
& o_{x}=-0.7 \mathrm{kN} \\
& \Sigma F_{y}=0: \quad 0_{y}-0.050(2.4)(9.81)-3-1.4 \cos 30^{\circ} \\
& -0.050(1.2)(9.81)=0, \quad 0 y=5.98 \mathrm{kN} \\
& \sum M_{0}=0: M_{0}-0.050(2.4)(9.81)(1.2)-3(1.8) \\
& -0.050(1.2)(9.81)\left(2.4+0.6 \cos 30^{\circ}\right)+4 \\
& -1.4\left(2.4 \cos 30^{\circ}+1.2\right)=0, \quad M_{0}=9.12 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Problem 10

The elements of a heavy-duty fluid valve are shown in the figure. When the member DB rotates clockwise about the fixed pivot O under the action of the force P the element S slides freely upward in its slot, releasing the flow. If an internal torsional spring exerts a moment $\mathrm{M}=20 \mathrm{~N} \cdot \mathrm{~m}$ as shown, determine the force P required to open the valve. Neglect all friction.

Solution

$$
\checkmark+\Sigma M_{0}=0: 20-P(0.180)=0, \quad P=111.1 \mathrm{~N}
$$

