Theory of structure

Stability and determinacy of structures

Beams

* Total equation of equilibrium of beam

$$
\begin{aligned}
& \sum F_{X}=0 \\
& \sum F_{Y}=0 \\
& \sum M=0
\end{aligned}
$$

Equation of condition Internal hinge:-
$\sum M=0$
$\mathrm{C}=1$
$\mathrm{C}=\mathrm{m}-1$

Roller:-
$\sum M=0$
$\sum F_{X}=0$
$\mathrm{C}=2$

Let $\mathrm{r}=$ No. of reaction
1- If $\mathrm{r}<\mathrm{c}+3$, unstable
2- $r=c+3$, determine if stable
3-r>c+3, indeterminate if stable
Let (m) degree of indeterminate $\mathrm{m}=\mathrm{r}-\mathrm{c}+3$)

* the structure is said to be unstable if one of the following facts couter 1- $\mathrm{r}<\mathrm{c}+3$
2- The reaction element constitutes a parallel force system.

3- The reaction element constitutes a concurrent force system.

4- Internal geometric instability:-

Example
$\mathrm{r}=4$
$\mathrm{c}=1$
$\mathrm{r}=\mathrm{c}+3$
$4=4$

The beam is unstable because the Internal geometric instability

Example

$$
\mathrm{r}=4
$$

$$
\mathrm{c}=\mathrm{m}-1, \quad \mathrm{c}=1
$$

$$
r=c+3
$$

$$
4=4
$$

The beam is determiate if stable

Example

$$
\mathrm{r}=7
$$

$\mathrm{c}=2$
$r>c+3$
$7>5$
The beam is indeterminate $2^{\text {nd }}$ degree if stable

Example
$\mathrm{r}=7$
$c=2$
$r>c+3$

$7>5$
The beam is unstable
Examples:-

Beam	r	C	$c+3$	state	Stability \& determinate.
()	3	0	3	$\mathrm{r}=\mathrm{c}+3$	Stable \& deter.
	4	0	3	$r>c+3$	Stable \& indeter. First degree
	6	1	4	$r>c+3$	Stable \&indeter. Second degree
	6	2	5	$r>c+3$	unstable
	3	0	3	$\mathrm{r}=\mathrm{c}+3$	unstable

Home Works

H.W1: Find the stability and determinacy of beam.

H.W2: Find the stability and determinacy of beam.

Stability and Determinacy of Trusses
$\mathrm{b}+\mathrm{r}=$ unknown
$j=$ equations
$1-\mathrm{b}+\mathrm{r}<2 \mathrm{j}$, the truss is unstable
$2-b+r=2 j$, the truss is determinate if stable
$3-b+r>2 j$, the truss is indeterminate if stable

Let (m) equal to the degree of indeterminate
$m=(b+r)-2 j$
$\mathrm{b}=$ No. of bars
$r=$ No. of reactions
$j=$ No. of joints
Examples: - Find the stability and determinacy of trusses below.
Ex 1
$r=3, b=11, j=7$
$b+r=14$
$2 \mathrm{j}=14$

$b+r=2 j$
The truss is stable \& determinate

Ex2
$\mathrm{r}=3, \mathrm{~b}=14, \mathrm{j}=8$
$b+r=17$
$2 \mathrm{j}=16$

$\mathrm{b}+\mathrm{r}>2 \mathrm{j}$, the truss is stable\& indeterminate $1^{\text {st }}$ degree

Ex3

$\mathrm{r}=3$
$b=13$

$2 \mathrm{j}=16$
$\mathrm{b}+\mathrm{r}=2 \mathrm{j}$, the truss is unstable because of $\sum F_{y} \neq 0$, in this section

Ex4
$\mathrm{r}=3, \mathrm{~b}=7, \mathrm{j}=5$
$b+r=10$
$2 \mathrm{j}=10$
$b+r=2 j$
The truss is stable \&

determinate

Ex5

$\mathrm{r}=3, \mathrm{~b}=7, \mathrm{j}=5$
$\mathrm{b}+\mathrm{r}=10$
$2 \mathrm{j}=10$
$b+r=2 j$
The truss is unstable

Ex6

$$
\begin{aligned}
& r=4, b=7, j=5 \\
& b+r=11 \\
& 2 j=10 \\
& b+r>2 j
\end{aligned}
$$

The truss is stable \& indeterminate $1^{\text {st }}$ degree

Home works

H.W1

H.W2

Stability and Determinacy of Frames
1- Open frames
$\mathrm{r}<\mathrm{C}+3$, unstable
$\mathrm{r}=\mathrm{C}+3$, determinate if stable
$r>C+3$, indeterminate if stable

Ex1:- Find the stability and determinacy of frame below
$\mathrm{C}_{1}=\mathrm{m}-1, \mathrm{C}_{1}=2-1=1$
$\mathrm{C}_{2}=\mathrm{m}-1, \mathrm{C}_{2}=3-1=2$
$\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}, \mathrm{C}=3$
$\mathrm{r}=11$
$C+3=6$

$\mathrm{r}>\mathrm{C}+3$, the frame is stable\& indeterminate $5^{\text {th }}$ degree.

Ex2:-
$r=5$
$\mathrm{C}=2-1=1$

$r>C+3$, the frame is stable \& indeterminate $1^{\text {st }}$ degree .

Ex3:-
$\mathrm{C}_{1}=\mathrm{m}-1, \mathrm{C}_{1}=4-1=3$
$\mathrm{C}_{2}=2$
$\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}, \mathrm{C}=5$
$\mathrm{r}=10$
$C+3=8$

$r>C+3$, the frame is stable $\&$ indeterminate $2^{\text {nd }}$ degree.

Ex4:-
$r=6$
$C=2$
$r>C+3$

The frame is unstable because of internal geometric instability

2- Closed Frames:-
$3 \mathrm{~b}+\mathrm{r}<3 \mathrm{j}+\mathrm{c}$, unstable
$3 \mathrm{~b}+\mathrm{r}=3 \mathrm{j}+\mathrm{c}$, determinate if stable
$3 \mathrm{~b}+\mathrm{r}>3 \mathrm{j}+\mathrm{c}$, indeterminate if stable

Where,
$3 \mathrm{~b}+\mathrm{r}=$ unknown
$3 j+c=$ equations
$\mathrm{b}=$ No. of members
$r=$ No. of reactions
j = No. of joints

Ex1:-
$\mathrm{b}=10$
$\mathrm{r}=6$
j = 9
$3 b+r=36$
$3 j+c=27$

$3 b+r>3 j+c$, stable \& indeterminate $9^{\text {th }}$ degree

Ex2:-
$\mathrm{b}=10$
$\mathrm{r}=12$
$\mathrm{j}=10$
$3 b+r=42$
$3 \mathrm{j}+\mathrm{c}=30$

$3 \mathrm{~b}+\mathrm{r}>3 \mathrm{j}+\mathrm{c}$, stable \& indeterminate $12^{\text {th }}$ degree

Ex3:-
$\mathrm{b}=4$
$r=6$
$\mathrm{j}=4$
$\mathrm{c}=0$
$3 b+r=18$

$3 \mathrm{j}+\mathrm{c}=12$
$3 b+r>3 j+c$, stable $\&$ indeterminate $6^{\text {th }}$ degree

Ex4:-
$\mathrm{b}=9$
$r=5$
$\mathrm{j}=7$
$\mathrm{c}=\mathrm{m}-1 \Rightarrow \mathrm{c}=1$
$3 b+r=32$

$3 \mathrm{j}+\mathrm{c}=22$
$3 \mathrm{~b}+\mathrm{r}>3 \mathrm{j}+\mathrm{c}$, stable $\&$ indeterminate $10^{\text {th }}$ degree

Ex5:-
$\mathrm{b}=10$
$\mathrm{r}=9$
$\mathrm{j}=9$
$c=m-1 \Rightarrow c=4-1 \Rightarrow c=3$
$3 b+r=39$
$3 \mathrm{j}+\mathrm{c}=30$

$3 b+r>3 j+c$, stable $\&$ indeterminate $9^{\text {th }}$ degree

> ملاحظة:- اذا جاء ال internal hinge في بداية او نهاية الضلع فيحسب منه (c \&) امـا اذا جاء في داخل الضلع فيحسب منة c c

Home work:
H.W1: Find the stability and determinacy of frame below

H.W2: Find the stability and determinacy of frame below

Stability and Determinacy of Composite Structure

Unknowns	Equations
1- Each truss member give one unknown	1- each member carry moment give (3 equations)
2- reactions	2- each joint connect truss members only give (2 equations)
3- each joint connect member carry moment give unknown in these equation $(2 *(m-1))$	

Ex1:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$(3 * 3)+0=9$
Unknowns
$1+3+\left(3^{*}(2(2-1))\right)=10$

Unknowns > Equations, Stable \& indeterminate $1^{\text {st }}$ degree

Ex2:- Find the stability and determinacy of composite structure as shown below.

Solution:
Equations
$(4 * 3)+0=12$
Unknowns

$$
1+3+\left(3^{*}(2(2-1))\right)+(2(3-1))=14
$$

Unknowns $>$ Equations, Stable \& indeterminate $2^{\text {nd }}$ degree

Ex3:- Find the stability and determinacy of composite structure as shown below.

Solution:
Equations
$(2 * 3)+(3 * 2)=12$
Unknowns
$9+6+0=15$

Unknowns > Equations, Stable \& indeterminate $2^{\text {nd }}$ degree

Ex4:- Find the stability and determinacy of composite structure as shown below.

Solution:
Equations
$(1 * 3)+(7 * 2)=17$
Unknowns
$13+5+0=18$

Unknowns > Equations, Stable \& indeterminate $1^{\text {st }}$ degree
H.w: Find the stability and determinacy of composite structure as shown below.

14

