Theory of structure

Stability and determinacy of structures

Beams

❖ Total equation of equilibrium of beam

$$\sum F_X = 0$$

$$\sum F_Y = 0$$

$$\sum M = 0$$

Equation of condition Internal hinge:-

$$\sum M=0$$

C=1

$$C = m - 1$$

Roller:-

$$\sum M = 0$$

$$\sum F_X = 0$$

$$C=2$$

Let r= No. of reaction

1- If
$$r < c+3$$
, unstable

2-
$$r = c+3$$
, determine if stable

- the structure is said to be unstable if one of the following facts couter
 - 1- r < c+3
 - 2- The reaction element constitutes a parallel force system.

3- The reaction element constitutes a concurrent force system.

4- Internal geometric instability:-

Example

r = 4

c = 1

r = c+3

4=4

The beam is unstable because the Internal geometric instability

Example

r = 4

c = m-1, c = 1

r = c+3

4=4

The beam is determiate if stable

Example

r=7

c=2

r>c+3

7>5

The beam is indeterminate 2nd degree if stable

Example

7>5

The beam is unstable

Examples:-

Beam	r	С	c+3	state	Stability & determinate.
nan haa.	3	0	3	r=c+3	Stable & deter.
	4	0	3	r>c+3	Stable & indeter. First degree
	6	1	4	r>c+3	Stable &indeter. Second degree
	6	2	5	r>c+3	unstable
	3	0	3	r =c+3	unstable

Home Works

H.W1: Find the stability and determinacy of beam.

H.W2: Find the stability and determinacy of beam.

Stability and Determinacy of Trusses

b + r = unknown

j = equations

1- b + r < 2j, the truss is unstable

2- b + r = 2j, the truss is determinate if stable

3- b + r > 2j, the truss is indeterminate if stable

Let (m) equal to the degree of indeterminate m=(b+r)-2j

b = No. of bars

r = No. of reactions

j = No. of joints

Examples: - Find the stability and determinacy of trusses below.

Ex1

$$r = 3, b = 11, j = 7$$

$$b+r = 14$$

$$2j = 14$$

$$b+r=2j$$

The truss is stable &determinate

Ex2

$$r = 3, b = 14, j = 8$$

$$b+r = 17$$

$$2j = 16$$

b+r>2j, the truss is stable& indeterminate 1^{st} degree

Ex3

$$r = 3$$

$$b = 13$$

$$2j = 16$$

b+r = 2j, the truss is unstable because of $\sum F_y \neq 0$, in this section

Ex4

$$r = 3, b = 7, j = 5$$

 $b + r = 10$
 $2 j = 10$

b + r = 2jThe truss is stable & determinate

Ex5

$$r = 3, b = 7, j = 5$$

 $b + r = 10$
 $2 j = 10$
 $b + r = 2j$

The truss is unstable

Ex6

$$r = 4, b = 7, j = 5$$

 $b + r = 11$
 $2 j = 10$
 $b + r > 2j$

The truss is stable & indeterminate 1st degree

Home works

H.W1

Asist Lecturer: Alaa Hussein Ali

AL- Mustaqbal University College

H.W2

Stability and Determinacy of Frames

1- Open frames

r < C+3, unstable

r = C+3, determinate if stable

r > C+3, indeterminate if stable

Ex1:- Find the stability and determinacy of frame below

$$C_1 = m-1, C_1 = 2-1 = 1$$

$$C_2 = m-1, C_2 = 3-1 = 2$$

$$C = C_1 + C_2$$
, $C = 3$

$$r = 11$$

$$C + 3 = 6$$

r > C+3, the frame is stable & indeterminate 5^{th} degree.

r > C+3, the frame is stable & indeterminate 1^{st} degree.

r > C+3, the frame is stable & indeterminate 2^{nd} degree.

The frame is unstable because of internal geometric instability

2- Closed Frames:-

3b+r < 3j+c, unstable

3b+r = 3j+c, determinate if stable

3b+r > 3j+c, indeterminate if stable

Where,

3b+r = unknown

3j+c = equations

b = No. of members

r = No. of reactions

j = No. of joints

Ex1:-

$$b = 10$$

$$r = 6$$

$$i = 9$$

$$3b+r = 36$$

$$3j+c = 27$$

3b+r > 3j+c, stable & indeterminate 9th degree

3b+r > 3j+c, stable & indeterminate 12th degree

3b+r > 3j+c, stable & indeterminate 6^{th} degree

3b+r > 3j+c, stable & indeterminate 10^{th} degree

3b+r > 3j+c, stable & indeterminate 9^{th} degree

Home work:

H.W1: Find the stability and determinacy of frame below

H.W2: Find the stability and determinacy of frame below

Stability and Determinacy of Composite Structure

Unknowns	Equations		
1- Each truss member give	1- each member carry moment give		
one unknown	(3 equations)		
2- reactions	2- each joint connect truss		
	members only give (2 equations)		
3- each joint connect			
member carry moment			
give unknown in these			
equation (2*(m-1))			

Ex1:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(3*3) +0 = 9$$

Unknowns

$$1+3+(3*(2(2-1)))=10$$

Unknowns > Equations, Stable & indeterminate 1st degree

Ex2:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(4*3) +0 = 12$$

Unknowns

$$1+3+(3*(2(2-1)))+(2(3-1))=14$$

Unknowns > Equations, Stable & indeterminate 2nd degree

Ex3:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(2*3) + (3*2) = 12$$

Unknowns

$$9+6+0=15$$

Unknowns > Equations, Stable & indeterminate 2nd degree

Ex4:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(1*3) + (7*2) = 17$$

Unknowns

$$13+5+0=18$$

Unknowns > Equations, Stable & indeterminate 1st degree

H.w: Find the stability and determinacy of composite structure as shown below.

14

Asist Lecturer: Alaa Hussein Ali