Class: $3^{\text {rd }}$

4.

Subject: Mechanical Engineering Design

Lecturer: Luay Hashem Abbud

Problem 6

Design a rubber belt to drive a dynamo generating 20 kW at $2250 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and fitted with a pulley 200 mm diameter. Assume dynamo efficiency to be 85%. Allowable stress for belt $=2.1 \mathrm{MPa}$, Density of rubber $=$ $1000 \mathrm{~kg} / \mathrm{m} 3$, Angle of contact for dynamo pulley $=165^{\circ}$, Coefficient of friction between belt and pulley $=0.3$

Solution

$P=20 \mathrm{~kW}=20 \times 10^{3} \mathrm{~W} ; N=2250$ r.p.m. $; d=200 \mathrm{~mm}=0.2 \mathrm{~m} ; \eta_{d}=85 \%=0.85 ; \sigma=2.1 \mathrm{MPa}=2.1 \times$ $106 \mathrm{~N} / \mathrm{m}^{2} ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} ; \theta=165^{\circ}=165 \times \pi / 180=2.88 \mathrm{rad} ; \mu=0.3$

$$
v=\frac{\pi d . N}{60}=\frac{\pi \times 0.2 \times 2250}{60}=23.6 \mathrm{~m} / \mathrm{s}
$$

power transmitted (P),

$$
\begin{aligned}
20 \times 10^{3} & =\left(T_{1}-T_{2}\right) v \cdot \eta_{d} \\
& =\left(T_{1}-T_{2}\right) 23.6 \times 0.85 \\
& =20.1\left(T_{1}-T_{2}\right)
\end{aligned}
$$

$\therefore T_{1}-T_{2}=20 \times 10^{3} / 20.1=995 \mathrm{~N}$

$$
\begin{array}{rlrl}
2.3 \log \left(\frac{T_{1}}{T_{2}}\right) & =\mu . \theta=0.3 \times 2.88=0.864 \\
\therefore \quad \log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{0.864}{2.3}=0.3756 \\
& \text { or } \quad \frac{T_{1}}{T_{2}} & =2.375
\end{array}
$$

... (Taking antilog of 0.3756)

$T 1=1719 \mathrm{~N}$; and $\quad T 2=724 \mathrm{~N}$
Let $\quad b=$ Width of the belt in metres, and
$t=$ Thickness of the belt in metres.
Assuming thickness of the belt, $t=10 \mathrm{~mm}=0.01 \mathrm{~m}$, we have
Cross-sectional area of the belt

$$
=b \times t=b \times 0.01=0.01 b \mathrm{~m} 2
$$

We know that mass of the belt per metre length,

$$
m=\text { Area } \times \text { length } \times \text { density }=0.01 b \times 1 \times 1000=10 b \mathrm{~kg} / \mathrm{m}
$$

\therefore Centrifugal tension,

$$
T_{\mathrm{C}}=m \cdot v^{2}=10 b(23.6)^{2}=5570 b \mathrm{~N}
$$

We know that maximum tension in the belt,

$$
T=\sigma . b . t=2.1 \times 106 \times b \times 0.01=21000 b \mathrm{~N}
$$

and tension in the tight side of belt (T1),

$$
\begin{array}{rlrl}
& 1719 & =T-T_{\mathrm{C}}=21000 b-5570 b=15430 b \\
\therefore & b=1719 / 15430=0.1114 \mathrm{~m}=111.4 \mathrm{~mm}
\end{array}
$$

The standard width of the belt (b) is 112 mm

Problem 7

Design a belt drive to transmit 110 kW for a system consisting of two pulleys of diameters 0.9 m and 1.2 m , centre distance of 3.6 m , a belt speed $20 \mathrm{~m} / \mathrm{s}$, coefficient of friction 0.3 , a slip of 1.2% at each pulley and 5% friction loss at each shaft, 20% over load.

Solution

$P=110 \mathrm{~kW}=110 \times 10^{3} \mathrm{~W} ; d 1=0.9 \mathrm{~m}$ or $r 1=0.45 \mathrm{~m} ; d 2=1.2 \mathrm{~m}$ or $r 2=0.6 \mathrm{~m} ; x=3.6 \mathrm{~m} ; v=20 \mathrm{~m} / \mathrm{s}$; $\mu=0.3 ; s 1=s 2=1.2 \%$
$N_{1}=$ Speed of the smaller or driving pulley in r.p.m., and
And $\quad N_{2}=$ Speed of the larger or driven pulley in r.p.m.

$$
\begin{aligned}
& 20=\frac{\pi d_{1} \cdot N_{1}}{60}\left(1-\frac{s_{1}}{100}\right)=\frac{\pi \times 0.9 N_{1}}{60}\left(1-\frac{1.2}{100}\right)=0.0466 N_{1} \\
& N_{1}=20 / 0.0466=430 \text { r.p.m. }
\end{aligned}
$$

$$
\frac{\pi d_{2} \cdot N_{2}}{60}=\text { Belt speed in } \mathrm{m} / \mathrm{s}\left(1-\frac{s_{2}}{100}\right)=v\left(1-\frac{s_{2}}{100}\right)
$$

$$
\frac{\pi \times 1.2 \times N_{2}}{60}=20\left(1-\frac{1.2}{100}\right)=19.76
$$

$$
N_{2}=\frac{19.76 \times 60}{\pi \times 1.2}=315 \mathrm{r} . \mathrm{p} . \mathrm{m} .
$$

the torque acting on the driven shaft

$$
=\frac{\text { Power transmitted } \times 60}{2 \pi N_{2}}=\frac{110 \times 10^{3} \times 60}{2 \pi \times 315}=3334 \mathrm{~N}-\mathrm{m}
$$

Since there is a 5% friction loss at each shaft, therefore torque acting on the belt

$$
=1.05 \times 3334=3500 \mathrm{~N}-\mathrm{m}
$$

Since the belt is to be designed for 20% overload, therefore design torque

$$
=1.2 \times 3500=4200 \mathrm{~N}-\mathrm{m}
$$

Let $\quad T 1=$ Tension in the tight side of the belt, and
$T 2=$ Tension in the slack side of the belt.
We know that the torque exerted on the driven pulley

$$
=(T 1-T 2) r 2=(T 1-T 2) 0.6=0.6(T 1-T 2) \mathrm{N}-\mathrm{m}
$$

Equating this to the design torque, we have

$$
0.6(T 1-T 2)=4200 \text { or } T 1-T 2=4200 / 0.6=7000 \mathrm{~N}
$$

Now let us find out the angle of contact $\left(\theta_{1}\right)$ of the belt on the smaller or driving pulley. From the geometry of the Figure, we find that

$$
\begin{aligned}
\sin \alpha & =\frac{O_{2} M}{O_{1} O_{2}}=\frac{r_{2}-r_{1}}{x}=\frac{0.6-0.45}{3.6}=0.0417 \quad \text { or } \alpha=2.4^{\circ} \\
\theta_{1} & =180^{\circ}-2 \alpha=180-2 \times 2.4=175.2^{\circ}=175.2 \times \frac{\pi}{180}=3.06 \mathrm{rad}
\end{aligned}
$$

$2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta_{1}=0.3 \times 3.06=0.918$
$\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.918}{2.3}=0.3991$ or $\frac{T_{1}}{T_{2}}=2.51 \ldots($ Taking antilog of 0.3991$)$

Subject: Mechanical Engineering Design

$$
T 1=11636 \mathrm{~N} \text {; and } \quad T 2=4636 \mathrm{~N}
$$

Let $\quad \sigma=$ Safe stress for the belt $=2.5 \mathrm{MPa}=2.5 \times 106 \mathrm{~N} / \mathrm{m} 2 \ldots$ (Assume)
$t=$ Thickness of the belt $=15 \mathrm{~mm}=0.015 \mathrm{~m}$, and \ldots..(Assume)
$b=$ Width of the belt in metres.
Since the belt speed is more than $10 \mathrm{~m} / \mathrm{s}$, therefore centrifugal tension must be taken into consideration. Assuming a leather belt for which the density may be taken as $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
\therefore Mass of the belt per metre length,

$$
\begin{aligned}
m & =\text { Area } \times \text { length } \times \text { density }=b \times t \times l \times \rho \\
& =b \times 0.015 \times 1 \times 1000=15 b \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

and centrifugal tension,

$$
T_{\mathrm{C}}=m \cdot v^{2}=15 b(20)^{2}=6000 b \mathrm{~N}
$$

We know that maximum tension in the belt,

$$
\begin{array}{ll}
& T=T_{1}+T_{\mathrm{C}}=\sigma . b . t \\
\text { or } & 11636+6000 b=2.5 \times 106 \times b \times 0.015=37500 b \\
\therefore & 37500 b-6000 b=11636 \text { or } b=0.37 \mathrm{~m} \text { or } 370 \mathrm{~mm}
\end{array}
$$

The standard width of the belt (b) is 400 mm
length of the belt

$$
\begin{aligned}
L & =\pi\left(r_{2}+r_{1}\right)+2 x+\frac{\left(r_{2}-r_{1}\right)^{2}}{x} \\
& =\pi(0.6+0.45)+2 \times 3.6+\frac{(0.6-0.45)^{2}}{3.6} \\
& =3.3+7.2+0.006=10.506 \mathrm{~m}
\end{aligned}
$$

Problem 8

A belt 100 mm wide and 10 mm thick is transmitting power at 1000 metres $/ \mathrm{min}$. The net driving tension is 1.8 times the tension on the slack side. If the safe permissible stress on the belt section in 1.6 MPa , calculate the maximum power, that can be transmitted at this speed. Assume density of the leather as $1000 \mathrm{~kg} / \mathrm{m} 3$. Calculate the absolute maximum power that can be transmitted by this belt and the speed at which this can be transmitted.

Solution

$b=100 \mathrm{~mm}=0.1 \mathrm{~m} ; t=10 \mathrm{~mm}=0.01 \mathrm{~m} ; v=1000 \mathrm{~m} / \mathrm{min}=16.67 \mathrm{~m} / \mathrm{s} ; T_{1}-T_{2}=1.8 T_{2} ; \sigma=1.6 \mathrm{MPa}$ $=1.6 \mathrm{~N} / \mathrm{mm}^{2} ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
the maximum tension in the belt,

$$
T=\sigma . b . t=1.6 \times 100 \times 10=1600 \mathrm{~N}
$$

Mass of the belt per metre length,

$$
\begin{aligned}
m & =\text { Area } \times \text { length } \times \text { density }=b \times t \times l \times \rho \\
& =0.1 \times 0.01 \times 1 \times 1000=1 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

\therefore Centrifugal tension,

$$
T_{\mathrm{C}}=m \cdot v^{2}=1(16.67)^{2}=278 \mathrm{~N}
$$

We know that

$$
\begin{gathered}
T_{1}=T-T_{\mathrm{C}}=1600-278=1322 \mathrm{~N} \\
T_{1}-T_{2}=1.8 T_{2} \\
T_{2}=\frac{T_{1}}{2.8}=\frac{1322}{2.8}=472 \mathrm{~N}
\end{gathered}
$$

The power transmitted.

$$
P=\left(T_{1}-T_{2}\right) v=(1322-472) 16.67=14170 \mathrm{~W}=14.17 \mathrm{~kW}
$$

the speed of the belt for maximum power

$$
v=\sqrt{\frac{T}{3 m}}=\sqrt{\frac{1600}{3 \times 1}}=23.1 \mathrm{~m} / \mathrm{s}
$$

Absolute maximum power, the centrifugal tension,

$$
T_{\mathrm{C}}=T / 3=1600 / 3=533 \mathrm{~N}
$$

\therefore Tension in the tight side,

$$
T_{1}=T-T_{\mathrm{C}}=1600-533=1067 \mathrm{~N}
$$

and tension in the slack side,

$$
T_{2}=\frac{T_{1}}{2.8}=\frac{1067}{2.8}=381 \mathrm{~N}
$$

Absolute maximum power transmitted,

$$
P=\left(T_{1}-T_{2}\right) v=(1067-381) 23.1=15850 \mathrm{~W}=15.85 \mathrm{~kW}
$$

