	Mol \%
$\mathrm{C}_{2} \mathrm{H}_{2}$	7.5
CO_{2}	$\underline{92.5}$
Total	100.0

The solvent from the CO_{2} stripper is pumped to the $\mathrm{C}_{2} \mathrm{H}_{2}$ stripper, which removes all the $\mathrm{C}_{2} \mathrm{H}_{2}$ as a pure product.

Answers:

1. Assume that the compositions in the figure are mass fractions. Then:

	lb	mass fraction
Toluene	396	0.644
Benzene	19.68	0.032
Xylene	200	0.325

2. 863 lb air/lb S

	Converter	Burner
SO_{2}	0.5%	9.5%
SO_{3}	9.4	-
O_{2}	7.4	11.5
$\mathrm{~N}_{2}$	82.7	79.0

3. (a) 1.14 ; (b) 2240 lb ; (c) 9.9%.

2.7 Recycle, Bypass, Purge, and the Industrial Application of Material Balances

Introduction

- Recycle is fed back from a downstream unit to an upstream unit, as shown in Figure 12.lc. The stream containing the recycled material is known as a recycle stream.
- Recycle system is a system that includes one or more recycle streams.
- Because of the relatively high cost of industrial feedstocks, when chemical reactions are involved in a process, recycle of unused reactants to the reactor can offer significant economic savings for high-volume processing systems. Heat recovery within a processing unit (energy recycle) reduces the overall energy consumption of the process.

b.

c.

Figure 12.1: Figure 12.la shows a single unit with serial flows. Figure 12.b shows multiple units but still with serial flows. Figure 12.lc shows the addition of recycle.

Recycle without Chemical Reaction

* Recycle of material occurs in a variety of processes that do not involve chemical reaction, including distillation, crystallization, and heating and refrigeration systems.
* Examine Figure 12.2. You can write material balances for several different systems, four of which are shown by dashed lines in Figure 12.2 (Overall balance 1, Mixer balance 2, Process balance 3 \& Separator balance 4).
* The fresh feed enters the overall system and the overall or net product is removed.
* The total (gross) feed enters the process and the gross product is removed.
* In addition, you can make balances (not shown in Figure 12.2) about combinations of subsystems, such as the process plus the separator ($\mathbf{3}$ plus 4), or the mixing point plus the process (2 plus 3).

Figure 12.2 Process with recycle (the numbers designate possible system boundaries for the material balances).

Example 35

Figure E12.la is a schematic of a process for the production of flake NaOH , which is used in households to clear plugged drains in the plumbing (e.g., Drano).

Figure E12.1a
The fresh feed to the process is $10,000 \mathrm{lb} / \mathrm{hr}$ of a 40% aqueous NaOH solution. The fresh feed is combined with the recycled filtrate from the crystallizer, and fed to the evaporator where water is removed to produce a $50 \% \mathrm{NaOH}$ solution, which in turn is fed to the crystallizer. The crystallizer produces a filter cake that is $95 \% \mathrm{NaOH}$ crystals and 5% solution that itself consists of $45 \% \mathrm{NaOH}$. The filtrate contains $45 \% \mathrm{NaOH}$.
a. You are asked to determine the flow rate of water removed by the evaporator, and the recycle rate for this process.
b. Assume that the same production rate of NaOH flakes occurs, but the filtrate is not recycled. What would be the total feed rate of $40 \% \mathrm{NaOH}$ have to be then? Assume that the product solution from the evaporator still contains $50 \% \mathrm{NaOH}$.

Solution

Open, steady-state process.

a. Basis: $\mathbf{1 0 , 0 0 0} \mathbf{l b}$ fresh feed (equivalent to $\mathbf{1}$ hour)

The unknowns are $\mathrm{W}, \mathrm{G}, \mathrm{P}$, and R.
Overall NaOH balance

$$
\begin{aligned}
& (0.4)(10,000)=0.95 \mathrm{P}+(0.45)(0.05) \mathrm{P} \\
& \mathrm{P}=4113 \mathrm{lb}
\end{aligned}
$$

Overall $\mathrm{H}_{2} \mathrm{O}$ balance

$$
\begin{gathered}
(0.6)(10,000)=\mathrm{W}+[(0.55)(0.05)](4113) \\
\mathrm{W}=5887 \mathrm{lb}
\end{gathered}
$$

(or use the overall total balance $10,000=4113+\mathrm{W}$)

The total amount of NaOH exiting with P is $\quad[(0.95)+(0.45)(0.05)](4113)=4000 \mathrm{lb}$

NaOH balance on the crystallizer $0.5 \mathrm{G}=4000+0.45 \mathrm{R}$
$\mathrm{H}_{2} \mathrm{O}$ balance on the crystallizer $\quad 0.5 \mathrm{G}=113+0.55 \mathrm{R}$
(or use the total balance $\mathrm{G}=\mathrm{R}+4113$)

$$
\mathrm{R}=38,870 \mathrm{lb}
$$

b. Figure E12.lb.

Figure E12.1b
The basis is now $P=4113 \mathrm{lb}$ (the same as 1 hour)
The unknowns are now F, W, G, and H .
NaOH balance on the crystallizer

$$
0.5 \mathrm{G}=[(0.95)+(0.05)(0.45)](4113)+0.45 \mathrm{H}
$$

$\mathrm{H}_{2} \mathrm{O}$ balance on the crystallizer

$$
\begin{gathered}
0.5 \mathrm{G}=[(0.05)(0.55)(4113)]+0.55 \mathrm{H} \\
\mathrm{H}=38,870 \mathrm{lb}
\end{gathered}
$$

Overall NaOH balance

$$
\begin{gathered}
0.40 \mathrm{~F}=0.45(38,870)+4000 \\
\mathrm{~F}=53,730 \mathrm{lb}
\end{gathered}
$$

囚 Note that without recycle, the feed rate must be $\mathbf{5 . 3 7}$ times larger than with recycle to produce the same amount of product.

Recycle with Chemical Reaction

区 The most common application of recycle for systems involving chemical reaction is the recycle of reactants, an application that is used to increase the overall conversion in a reactor. Figure 12.3 shows a simple example for the reaction

Figure 12.3 A simple recycle system with chemical reaction.

If you calculate the extent of reaction for the overall process in Figure 12.3 based on B

$$
\xi_{\text {overall }}=\frac{100-0}{1}=100 \text { moles reacting }
$$

If you use material balances to calculate the output \mathbf{P} of the reactor (on the basis of $\mathbf{1}$ second) you get $A=900 \mathrm{~g}$ mol $B=100 \mathrm{~g} \mathrm{~mol}$

And the extent of reaction based on \mathbf{B} for the reactor by itself as the system is

$$
\xi_{\text {reactor }}=\frac{100-0}{1}=100 \text { moles reacting }
$$

In general, the extent of reaction is the same regardless of whether an overall material balance is used or a material balance for the reactor is used.

- Two types of conversion when reactions occur:

1. Overall fraction conversion:

mass (moles) of reactant in the fresh feed-mass (moles) of reactant in the output of the overall process mass (moles) of reactant in the fresh feed

2. Single - pass ("once - through") fraction conversion:

mass (moles) of reactant fed into the reactor - mass (moles) of reactant exiting the reactor

mass (moles) of reactant fed into the reactor

For the simple recycle reactor in Figure 12.3, the overall conversion is

$$
\frac{100-0}{100} \times 100=100 \%
$$

And the single-pass conversion is

$$
\frac{1000-900}{1000} \times 100=10 \%
$$

When the fresh feed consists of more than one reactant, the conversion can be expressed for a single component, usually the limiting reactant, or the most important (expensive) reactant.

- The overall conversion and the single-pass conversion can be expressed in terms of the extent of reaction, $\boldsymbol{\xi}$.

$$
\begin{gather*}
\text { Overall conversion of species } \mathrm{A}=f_{\mathrm{OA}}=\frac{-v_{\mathrm{A}} \xi}{n_{\mathrm{A}}^{\text {fresh feed }}} \tag{12.1}\\
\text { Single-pass conversion }=f_{\mathrm{SP}}=\frac{-v_{\mathrm{A}} \xi}{n_{\mathrm{A}}^{\text {reactor feed }}} \tag{12.2}\\
\qquad \frac{f_{\mathrm{SP}}}{f_{\mathrm{OA}}}=\frac{n_{\mathrm{A}}^{\text {fresh feed }}}{n_{\mathrm{A}}^{\text {fresh feed }}+n_{\mathrm{A}}^{\text {recycle }}} \tag{12.3}
\end{gather*}
$$

Example 36

Cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ can be made by the reaction of benzene $(\mathrm{Bz})\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ with hydrogen according to the following reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}
$$

For the process shown in Figure El2.2, determine the ratio of the recycle stream to the fresh feed stream if the overall conversion of benzene is 95%, and the single-pass conversion is 20%. Assume that 20% excess hydrogen is used in the fresh feed, and that the composition of the recycle stream is $22.74 \mathrm{~mol} \%$ benzene and $77.26 \mathrm{~mol} \%$ hydrogen.

Figure E12.2 Schematic of a recycle reactor.

Solution

The process is open and steady state.
Basis $=100 \mathbf{~ m o l}(\mathbf{g ~ m o l ~ o r ~ l b ~ m o l})$ of fresh benzene feed
Excess $\mathrm{H}_{2}=($ in - required $) /$ required (for complete reaction) In H_{2} (Feed):

$$
n_{\mathrm{H}_{2}}^{\mathrm{F}}=100(3)(1+0.20)=360 \mathrm{~mol}
$$

The total fresh feed $=100+360=460 \mathrm{~mol}$.
From Equation (12.1) for benzene $\left(\nu_{\mathrm{Bz}}=-1\right)$

$$
0.95=\frac{-(-1) \xi}{100}
$$

$$
\xi=95 \text { reacting moles. }
$$

The unknowns are $R, n_{\mathrm{B}_{2}}^{P}, n_{\mathrm{H}_{2}}^{P}$, and $n_{\mathrm{C}_{6} \mathrm{H}_{12}}^{P}$.
The species overall balances are

$$
n_{\mathrm{i}}^{\text {out }}=n_{\mathrm{i}}^{\text {in }}+\nu_{\mathrm{i}} \xi_{\text {overall }}
$$

$$
\begin{aligned}
& \text { Bz: } \quad n_{\mathrm{Bz}}^{\mathrm{P}}=100+(-1)(95)=5 \mathrm{~mol} \\
& \mathrm{H}_{2}: \quad n_{\mathrm{H}_{2}}^{\mathrm{P}}=360+(-3)(95)=75 \mathrm{~mol} \\
& \mathrm{C}_{6} \mathrm{H}_{12} \quad n_{\mathrm{C}_{6} \mathrm{H}_{12}}^{\mathrm{P}}=0+(1)(95)=95 \mathrm{~mol} \\
& P=175 \mathrm{~mol}
\end{aligned}
$$

The amount of the $\mathbf{B z}$ feed to the reactor is $\mathbf{1 0 0}+\mathbf{0 . 2 2 7 4} \mathbf{R}$, and $\boldsymbol{\xi}=\mathbf{9 5}$. Thus, for benzene

$$
0.20=\frac{-(-1) 95}{100+0.2274 R}
$$

and

$$
\mathrm{R}=1649 \mathrm{~mol}
$$

Finally, the ratio of recycle to fresh feed is

$$
\frac{R}{F}=\frac{1649 \mathrm{~mol}}{460 \mathrm{~mol}}=3.58
$$

Example 37

Immobilized glucose isomerase is used as a catalyst in producing fructose from glucose in a fixed-bed reactor (water is the solvent). For the system shown in Figure El2.3a, what percent conversion of glucose results on one pass through the reactor when the ratio of the exit stream to the recycle stream in mass units is equal to 8.33 ? The reaction is

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}
$$

(a)

Figure E12.3a

Solution

The process is an open, steady-state process with a reaction occurring and a recycle.

囚 Figure E12.3b includes all the known and unknown values of the variables using appropriate notation (W stands for water, G for glucose, and F for fructose).
区 Note that the recycle stream and product stream have the same composition, and consequently the same mass symbols are used in the diagram for each stream.

(b)

Figure E12.3b
Pick as a basis $S=100 \mathbf{k g}$

Overall balances

Total: $\quad \mathrm{P}=\mathrm{S}=100 \mathrm{~kg}$
Consequently,

$$
\left.R=\frac{100}{8.33}=12.0 \mathrm{~kg} \quad / \mathbf{R}=\mathbf{8 . 3 3}\right]
$$

Overall no water is generated or consumed, hence

Water:

$$
\begin{aligned}
& 100(0.60)=P \omega_{W}^{R}=100 \omega_{W}^{R} \\
& \omega_{W}^{R}=0.60
\end{aligned}
$$

Mixing point 1

$$
\begin{aligned}
& \text { Total: } 100+12=\mathrm{T}=112 \\
& \text { Glucose: } \quad 100(0.40)+12 \omega_{G}^{R}=112 \omega_{G}^{T} \\
& \text { Fructose: } \quad 0+12 \omega_{F}^{R}=112(0.04)
\end{aligned}
$$

Or

$$
\omega_{F}^{R}=0.373
$$

Also, because $\omega_{F}^{R}+\omega_{G}^{R}+\omega_{W}^{R}=1$,
$\omega_{G}^{R}=1-0.373-0.600=0.027$
Next from the glucose balance

$$
\omega_{G}^{T}=0.360
$$

Reactor plus Separator 2

Total:

$$
\mathrm{T}=12+100=112 \text { (a redundant equation) }
$$

Glucose:

$$
\begin{aligned}
& \omega_{G}^{T} T-(R+P)\left(\omega_{G}^{R}\right)=(f)\left(\omega_{G}^{T} T\right) \\
& (0.360)(112)-(112)(0.027)=f(0.360)(112) \\
& \quad 40.3-3.02=f(40.32) \\
& \quad f=0.93
\end{aligned}
$$

Check by using Equation 12.2 and the extent of reaction

$$
\xi=\frac{3.02-40}{-1}=37 f=\frac{-(-1)(37)}{40}=0.93
$$

Example 38

Reactors that involve biological materials (bioreactors) use living organisms to produce a variety of products. Bioreactors are used for producing ethanol, antibiotics, and proteins for dietary supplements and medical diagnosis. Figure E12.4 shows a recycle bioreactor in which the overall conversion of the proprietary component in the fresh feed to product is 100%. The conversion of the proprietary component to product per pass in the reactor is 40%. Determine the amount of recycle and the mass percent of component in the recycle stream if the product stream contains 90% product, and the feed to the reactor contains $3 \mathrm{wt} \%$ of the component.

Figure E12.4
Assume that the component and the product have essentially the same molecular weight, and that the waste contains only water and dead cells.

Solution

Basis $=100 \mathrm{~kg}$ of fresh feed (F).

Overall balances

Total balance: $100=\mathrm{P}+\mathrm{W}$
Component balance: $0.10(100)=0.90 \mathrm{P}$
$\mathrm{P}=11.1 \mathrm{~kg} \quad \mathrm{~W}=88.9 \mathrm{~kg}$

The reactor plus the product recovery unit balance

$$
\begin{gathered}
\text { Accumulation } \begin{array}{c}
\text { Input Output Generation Consumption } \\
0
\end{array}=[100(0.10)+R \omega]-R \omega+\begin{array}{c}
\text { Con } \\
R \omega=15 \mathrm{~kg} \text { of component in the recycle stream }
\end{array}
\end{gathered}
$$

Mixer balance

Component balance: $100(0.10)+15=0.03 \mathrm{~F}^{\prime} \longrightarrow \mathrm{F}^{\prime}=833 \mathrm{~kg}$
Total balance: $\quad \mathrm{R}+100=\mathrm{F}^{\prime} \longrightarrow \mathrm{R}=833-100=733 \mathrm{~kg}$

$$
\omega=\frac{15}{733}=0.0205
$$

Bypass and Purge

a. A bypass stream-a stream that skips one or more stages of the process an goes directly to another downstream stage (Figure 12.4).

A bypass stream can be used to control the composition of a final exit stream from a unit by mixing the bypass stream and the unit exit stream in suitable proportions to obtain the desired final composition.

Figure 12.4 A process with a bypass stream.
b. A purge stream-a stream bled off from the process to remove an accumulation of inert or unwanted material that might otherwise build up in the recycle stream (Figure 12.5).

Figure 12.5 A process with a recycle stream with purge.

Example 39

In the feedstock preparation section of a plant manufacturing natural gasoline, isopentane is removed from butane-free gasoline. Assume for purposes of simplification that the process and components are as shown in Figure E12.5. What fraction of the butane-free gasoline is passed through the isopentane tower? The process is in the steady state and no reaction occurs.

Figure E12.5

Solution

Basis: 100 kg feed

Overall balances

Total material balance:

$$
\begin{equation*}
\frac{I n}{100}=\frac{O u t}{S+P} \tag{a}
\end{equation*}
$$

Component balance for $\mathrm{n}-\mathrm{C}_{5}$ (tie component)

$$
\begin{equation*}
\frac{I n}{100(0.80)}=\frac{O u t}{S(0)+P(0.90)} \tag{b}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
& P=100\left(\frac{0.80}{0.90}\right)=88.9 \mathrm{~kg} \\
& S=100-88.9=11.1 \mathrm{~kg}
\end{aligned}
$$

Balance around isopentane tower:

Let \mathbf{x} be the kg of butane-free gas going to the isopentane tower, and \mathbf{y} be the kg of the $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$ stream leaving the isopentane tower.

Total material balance:

$$
\begin{equation*}
\frac{I n}{x}=\frac{O u t}{11.1+y} \tag{c}
\end{equation*}
$$

Component balance for $\mathrm{n}^{-\mathrm{C}_{5}}$

$$
\begin{equation*}
x(0.80)=y \tag{d}
\end{equation*}
$$

Consequently, combining (c) and (d) yields $\quad \mathbf{x}=\mathbf{5 5 . 5} \mathbf{~ k g}$, or the desired fraction is 0.55 .

Another approach to this problem is to make a balance at mixing points 1 and 2.

Balance around mixing point 2 :

$$
\begin{equation*}
\text { Material into junction }=\text { Material out } \tag{e}
\end{equation*}
$$

Total material: $(100-x)+y=88.9$
Component (iso-C S $_{5}$: $(100-\mathrm{x})(0.20)+0=88.9(0.10)$
Solving yields
$\mathrm{x}=55.5 \mathrm{~kg}$ as before

Example 40

Figure E12.6 illustrates a steady-state process for the production of methanol. All of the compositions are in mole fractions or percent. The stream flows are in moles.

$$
\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}
$$

Figure E12.6
Note in Figure E12.6 that some CH_{4} enters the process, but does not participate in the reaction. A purge stream is used to maintain the CH_{4} concentration in the exit from the separator at no more than $3.2 \mathrm{~mol} \%$, and prevent hydrogen buildup as well. The once-through conversion of the CO in the reactor is 18%.

Compute the moles of recycle, $\mathrm{CH}_{3} \mathrm{OH}$, and purge per mole of feed, and also compute the purge gas composition.

Solution

The mole fraction of the components in the purge stream have been designated as x , y , and z for $\mathrm{H}_{2}, \mathrm{CO}$, and CH_{4}, respectively.

$$
\text { Basis: } \mathbf{F}=100 \mathrm{~mol}
$$

The variables whose values are unknown are $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{E}, \mathrm{P}$, and R .

$$
\begin{equation*}
z=0.032 \tag{a}
\end{equation*}
$$

The implicit mole fraction balance in the recycle stream

$$
\begin{equation*}
x+y+z=1 \tag{b}
\end{equation*}
$$

The overall element balances are (in moles):

$$
\begin{array}{ll}
2 \mathrm{H}: 67.3+0.2(2) & =E(2)+P(x+2 z) \\
\mathrm{C}: & 32.5+0.2 \\
\mathrm{O}: & 32.5 \tag{e}
\end{array}
$$

Reactor plus the Separator

$$
\begin{equation*}
\mathrm{CO}: \frac{\text { In }}{[32.5+R y]}-\frac{\text { Out }}{[y(R+P)]}=\frac{\text { Consumed }}{(32.5+R y)(0.18)} \tag{f}
\end{equation*}
$$

Equation (a) can be substituted into Equations (b) through (f), and the resulting five equations solved by successive substitution or by using a computer program. The resulting values obtained are (in moles)

E	$\mathrm{CH}_{3} \mathrm{OH}$	31.25
P	purge	6.25
R	recycle	705
x	H_{2}	0.768
y	CO	0.200
z	CH_{4}	0.032

Problems

1. How many recycle streams occur in Figure SAT12.1PI?

Figure SAT12.1P1
2. The Hooker Chemical Corporation operates a process in Michigan for the purification of HCl . Figure SATI2.1P2 shows the flow sheet for the Hooker process. The streams from the bottoms of the five towers are liquid. The streams from the tops of the towers are gases. HCl is insoluble in the HCB (hexachlorobutadiens). The various stream compositions are shown in Figure SAT12.1P2.
How many recycle streams are there in the Hooker process?

3. A ball mill grinds plastic to make a very fine powder. Look at Figure SAT12.2P1.

Figure SAT12.2P1
At the present time $10,000 \mathrm{~kg}$ of powder are produced per day. You observe that the process (shown by the solid lines) is inefficient because 20% of the feed is not recovered as powder-it goes to waste.

You make a proposal (designated by the dashed lines) to recycle the uncollected material back to the feed so that it can be remilled. You plan to recycle 75% of the 200 kg of uncollected material back to the feed stream. If the feed costs $\$ 1.20 / \mathrm{kg}$, how much money would you save per day while producing $10,000 \mathrm{~kg}$ of fine powder?
4. Sea water is to be desalinized by reverse osmosis using the scheme indicated in Figure SATI2.2P2. Use the data given in the figure to determine: (a) the rate of waste brine removal (B); (b) the rate of desalinized water (called potable water) production (P); (c) the fraction of the brine leaving the reverse osmosis cell (which acts in essence as a separator) that is recycled.

Figure SAT12.2P2
5. A material containing 75% water and 25% solid is fed to a granulator at a rate of $4000 \mathrm{~kg} / \mathrm{hr}$. The feed is premixed in the granulator with recycled product from a dryer, which follows the granulator (to reduce the water concentration of the overall material fed into the granulator to 50% water, 50% solid). The product that leaves the dryer is 16.7% water. In the dryer, air is passed over the solid being dried. The air entering the dryer contains 3% water by weight (mass), and the air leaving the dryer contains 6% water by weight (mass).
a. What is the ratio of the recycle to the feed entering the granulator?
b. What is the rate of air flow to the dryer on a dry basis?
6. Benzene, toluene, and other aromatic compounds can be recovered by solvent extraction with sulfur dioxide $\left(\mathrm{SO}_{2}\right)$. Figure SAT12.2P4 is the process schematic. As an example, a catalytic reformate stream containing 70% benzene and 30% nonbenzene material is passed through the countercurrent extractive recovery scheme shown in Figure SAT12.2P4. 1000 lb of reformate and 3000 lb of SO_{2} are fed to the system per hour. The benzene product stream contains 0.15 lb of SO_{2} per lb of benzene. The raffinate stream contains all the initially charged nonbenzene material as well as 0.25 lb of benzene per lb of nonbenzene material. The remaining component in the raffinate stream is SO_{2}. How many lb of benzene are extracted in the product stream on an hourly basis? How many lb of raffinate are produced per hour?

Figure SAT12.2P4
7. A catalytic dehydrogenation process shown in Figure SAT12.3Pl, produces 1,3 butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$ from pure normal butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$. The product stream contains $75 \mathrm{~mol} / \mathrm{hr}$ of H_{2} and $13 \mathrm{~mol} / \mathrm{hr}$ of $\mathrm{C}_{4} \mathrm{H}_{10}$ as well as $\mathrm{C}_{4} \mathrm{H}_{6}$. The recycle stream is $30 \%(\mathrm{~mol}) \mathrm{C}_{4} \mathrm{H}_{10}$ and $70 \%(\mathrm{~mol}) \mathrm{C}_{4} \mathrm{H}_{6}$, and the flow is $24 \mathrm{~mol} / \mathrm{hr}$.

Figure SAT12.3P1
(a) What are the feed rate, F , and the product flow rate of $\mathrm{C}_{4} \mathrm{H}_{6}$ leaving the process?
(b) What is the single-pass conversion of butane in the process?
8. Pure propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ from El Paso is dehydrogenated catalytically in a continuous process to obtain propylene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$. All of the hydrogen formed is separated from the reactor exit gas with no loss of hydrocarbon. The hydrocarbon mixture is then fractionated to give a product stream containing 88 mole $\%$ propylene and 12 mole \% propane. The other stream, which is 70 mole \% propane and 30 mole \% propylene, is recycled. The one-pass conversion in the reactor is 25%, and 1000 kg of fresh propane are fed per hour. Find (a) the kg of product stream per hour, and (b) the kg of recycle stream per hour.
9. Ethyl ether is made by the dehydration of ethyl alcohol in the presence of sulfuric acid at $140^{\circ} \mathrm{C}$:

$$
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

Figure SAT12.3P3 is a simplified process diagram. If 87% conversion of the alcohol fed to the reactor occurs per pass in the reactor, calculate: (a) kilograms per hour of fresh feed, and (b) kilograms per hour of recycle.

Figure SAT12.3P3
10. In the famous Haber process (Figure SAT12.4P1) to manufacture ammonia, the reaction is carried out at pressures of 800 to 1000 atm and at 500 to $600^{\circ} \mathrm{C}$ using a suitable catalyst. Only a small fraction of the material entering the reactor reacts on one pass, so recycle is needed. Also, because the nitrogen is obtained from the air, it contains almost 1% rare gases (chiefly argon) that do not react. The rare gases would continue to build up in the recycle until their effect on the reaction equilibrium would become adverse. Therefore, a small purge stream is used.

Figure SAT12.4P1
The fresh feed of gas composed of $75.16 \% \mathrm{H}_{2}, 24.57 \% \mathrm{~N}_{2}$, and $0.27 \% \mathrm{Ar}$ is mixed with the recycled gas and enters the reactor with a composition of $79.52 \% \mathrm{H}_{2}$. The gas stream leaving the ammonia separator contains $80.01 \% \mathrm{H}_{2}$ and no ammonia. The product ammonia contains no dissolved gases. Per 100 moles of fresh feed:
a. How many moles are recycled and purged?
b. What is the percent conversion of hydrogen per pass?
11. Figure SAT12.4P2 shows a simplified process to make ethylene dichloride $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$. The feed data have been placed on the figure. Ninety percent conversion of the $\mathrm{C}_{2} \mathrm{H}_{4}$ occurs on each pass through the reactor. The overhead stream from the separator contains 98% of the Cl_{2} entering the separator, 92% of the entering $\mathrm{C}_{2} \mathrm{H}_{4}$, and 0.1% of the entering $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C1}_{2}$. Five percent of the overhead from the separator is purged. Calculate (a) the flow rate and (b) the composition of the purge stream.

Figure SAT12.4P2

Answers:

1. 2
2. 5
3. $\$ 2250$
4. (a) $591 \mathrm{lb} / \mathrm{hr}$; (b) $409 \mathrm{lb} / \mathrm{hr}$; (c) 0.55
5. (a) ratio $=3000 \mathrm{~kg}$ of recycle $/ \mathrm{hr}$ and feed $=7000 \mathrm{~kg} / \mathrm{hr}$; (b) air $=85,100 \mathrm{~kg} / \mathrm{hr}$
6. (a) benzene extracted: $\mathrm{P}=625 \mathrm{lb} / \mathrm{hr}$; (b) raffinate produced: $\mathrm{R}=3,281 \mathrm{lb} / \mathrm{hr}$
7. (a) $\mathrm{mol} / \mathrm{hr}_{4} \mathrm{H}_{6}=37.5$ and $\mathrm{F}=50.5 \mathrm{~mol} / \mathrm{hr}$; (b) 0.65
8. (a) $960 \mathrm{~kg} / \mathrm{hr}$; (b) $3659 \mathrm{~kg} / \mathrm{hr}$
9. (a) $1570 \mathrm{~kg} / \mathrm{hr}$; (b) $243 \mathrm{~kg} / \mathrm{hr}$
10. (a) 890 recycled and 3.2 purged; (b) 9.2% conversion (errors can be caused by loss of significant figures)
11. (a) $1.49 \mathrm{~mol} / \mathrm{hr} ;$ (b) $\mathrm{Cl}_{2}: 0.658 ; \mathrm{C}_{2} \mathrm{H}_{4}: 0.338 ; \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}: 0.0033$.
