Eccentric combined footing design

Example: A rectangular eccentric combined footing shown in the figure is required to be fully designed. The allowable bearing capacity of the underlying soil is $q_{a}=50 \mathrm{KN} / \mathrm{m} 2$. The distance between the two column is $3 \mathrm{~m} . f_{\bar{c}}=25 \mathrm{Mpa}, \quad f_{y}=450 \mathrm{Mpa}$

The first step is to transmit the forces system to the center. This is may be done as follows:For simplify the problem, suppose the center of the right column is at the edge of the footing.
$M=50 B-(450-75 B)=125 B-450$ clockwise
$q=\frac{N}{L B}+\frac{6 M}{L B^{2}}$
$q_{1}=\frac{250}{L B}+\frac{6(125 B-450)}{L B^{2}}$
$q_{2}=\frac{250}{L B}-\frac{6(125 B-450)}{L B^{2}}$
Let the footing is rectangular and suppose $B=2 L$, this leads to
$q_{1}=\frac{250}{L * 2 L}+\frac{6(125 * 2 L-450)}{L *(2 L)^{2}}=\frac{125}{L^{2}}+\frac{6(250 L-450)}{4 L^{3}}$
$q_{2}=\frac{250}{L * 2 L}-\frac{6(125 B-450)}{L B^{2}}=\frac{125}{L^{2}}-\frac{6(250 L-450)}{4 L^{3}}$

In all cases q2 is larger than q1, therefore q2 should be used for footing dimension design

Let;
$\frac{125}{L^{2}}-\frac{6(250 L-450)}{4 L^{3}}=50 \mathrm{KN} / \mathrm{m} 2$
$125 L+675-375 L=50 L^{3}$
$-200 L-50 L^{3}=-675$
$\mathrm{L}=1.835 \mathrm{~m} \cong 1.85, \mathrm{~B}=3.67 \mathrm{~m} \cong 3.7 \mathrm{~m}$ Footing dimensions
$M=125 B-450=125 * 3.7-450=12.5 K N . m$ clockwise
$q_{2}==\frac{125}{1.85^{2}}-\frac{6(250 * 1.85-450)}{4(1.85)^{3}}=33.56 K N / m 2 * 1.85 \mathrm{~m}=62 \mathrm{KN} / \mathrm{m}$
$q_{1}=\frac{125}{(1.85)^{2}}+\frac{6(250 * 1.85-450)}{4(1.85)^{3}}=39.48 K N / m 2$
$q_{1}=39.48 \frac{\mathrm{KN}}{\mathrm{m} 2} * 1.85=73 \mathrm{KN} / \mathrm{m}$
Checking of eccentricity
$e=\frac{12.5}{250}=0.062 m, e=\frac{B}{6}=\frac{3.7 m}{6}=0.616 m$
$0.062<0.61$ OK
Shear force diagram
1- Shear force left $\mathrm{a}=62 * 0.7+\frac{11}{3.7} * 0.7^{2} / 2=44.128 \mathrm{KN}$
2- Shear force right $a=44.128-150=-105.871 \mathrm{KN}$
3- Shear force left d=(62+73)/2*3.7-150=100KN
4- Shear force right d=0
Zero shear point
$62 * X+\frac{11}{3.7} * \frac{X^{2}}{2}-150=0$
$62 X+0.14864 X^{2}=150, \quad X=2.41$ (Zero shear point and max moment)
Maximum moment
$M_{a}=62 * \frac{0.7^{2}}{2}+\frac{11}{3.7} * \frac{0.7^{3}}{6}=15.36 \mathrm{KN} . \mathrm{m}$
$M_{\max }=62 * \frac{2.41^{2}}{2}+\frac{11}{3.7} * 2.41 * \frac{2.41}{2} * \frac{2.41}{3}-150 * 1.71$
$M_{\max }=47.74+6.9357-256.5=201.8 K N . m$

SFD and BMD

H determination
$v_{U}=0.8 \sqrt{f_{\vec{c}}}=0.8 \sqrt{25}=4 \mathrm{~N} / \mathrm{mm} 2$
$d=\frac{2 N_{U}}{\text { perimeter } . v_{U}}=\frac{2 * 1.6 * 150 * 1000}{1200 * 4}=200 \mathrm{~mm}$, take $d=300 \mathrm{~mm}$ minimum
$H=300+50$ cover +20 mm bar $=370 \mathrm{~mm}$, approximate to 400 mm
Real $d=400-50$ cover $-20 \emptyset=330 \mathrm{~mm}$

Reinforcement design
Reinforcement at maximum moment
$K=\frac{M_{\max }}{f_{\bar{c}} L d^{2}}=\frac{201.8 * 10^{6}}{25 * 1850 * 300^{2}}=0.04848$
$\frac{Z}{d}=0.5+\sqrt{0.25-\frac{0.04848}{0.9}}=0.942<0.95 \quad O K$
$Z=0.942 * 330=310.5$
$A_{s}=\frac{M}{0.95 f_{y} Z}=\frac{1.5 * 201.8 * 10^{6}}{0.95 * 450 * 310.5}=2,280.4 \mathrm{~mm} 2$
Minimum reinforcement $=0.13 \mathrm{Ld}=0.13 * 1850 * 330 / 100=793.65 \mathrm{~mm} 2$ OK
No of bars $=\frac{2,280.4}{314.1}=7.26$, use $8 \emptyset 20$ for Negative side.
Spacing $=\frac{185}{8}=23.125$, use 20 cm , use $9 \varnothing 20$ to keep the distance between the bars 20 cm

Shear Check

Shear force $\quad v=\frac{\frac{39.5 K N}{m}+33.5 \mathrm{KN} / \mathrm{m}}{2} * 3.7 \mathrm{~m} * 0.445 \mathrm{~m}=60 \mathrm{KN}$
Shear stress $=\frac{v}{B d}=\frac{60 * 1000}{3700 * 330}=0.049$
$V_{C}=\left[0.79\left(\frac{100 A_{S}}{L d}\right)^{2} \frac{400}{d}\left(\frac{f_{\bar{C}}}{25}\right)^{\frac{1}{3}} / 1.25\right.$
If $\frac{400}{d}<1$ take it 1
$V_{C}=\left[0.79\left(\frac{100 * 2,280.4}{1850 * 330}\right)^{2} \frac{400}{330}\left(\frac{25}{25}\right)^{\frac{1}{3}} / 1.25=0.10688>0.049\right.$ OK
Check Punching
Perimeter of punching, $U=300 * 4+8 * 1.5 * 330=5,160 \mathrm{~mm}$
$A_{p}=1.85^{2}-(3 * 0.33+0.3)^{2}=1.7584 m^{2}$
Punching force, $V_{p}=1.785 * \frac{33.5+\frac{6}{3.7} * 1.85}{2}=32.57 \mathrm{KN}$
Punching stress, $v_{p}=\frac{32.57 * 1000}{5160 * 330}=0.019 \mathrm{n} / \mathrm{mm} 2<V_{C}$

