Lecture: 4 Logic: Part IV

Algebra of Propositions

Propositions satisfy various laws which are listed in the table below. (In this table, T and F are restricted to the truth values "True" and "False," respectively.)

Idempotent laws:	(1a) $p \lor p \equiv p$	(1b) $p \wedge p \equiv p$				
Associative laws:	(2a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$	(2b) $(p \land q) \land r \equiv p \land (q \land r)$				
Commutative laws:	$(3a) \ p \lor q \equiv q \lor p$	(3b) $p \wedge q \equiv q \wedge p$				
Distributive laws:	(4a) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	(4b) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$				
Identity laws:	(5a) $p \lor F \equiv p$	(5b) $p \wedge T \equiv p$				
Includy laws.	(6a) $p \lor T \equiv T$	(6b) $p \wedge F \equiv F$				
Involution law:	$(7) \neg \neg p \equiv p$					
Complement laws:	(8a) $p \lor \neg p \equiv T$	(8b) $p \land \neg p \equiv T$				
Complement laws.	$(9a) \neg T \equiv F$	$(9b) \neg F \equiv T$				
DeMorgan's laws:	$(10a) \neg (p \lor q) \equiv \neg p \land \neg q$	$(10b) \neg (p \land q) \equiv \neg p \lor \neg q$				

Laws of the algebra of propositions

ARGUMENTS

An *argument* is an assertion that a given set of propositions P_1, P_2, \ldots, P_n called *premises*, yields, another proposition Q, called the *conclusion*. Such an argument is denoted by $P_1, P_2, \ldots, P_n \vdash Q$

The notion of a "logical argument" or "valid argument" is formalized as follows:

Definitions

<u>Valid Argument:</u> An argument $P_1, P_2, \ldots, P_n \vdash Q$ is said to be *valid* if Q is true whenever all the premises P_1, P_2, \ldots, P_n are true.

Fallacy: An argument which is not valid is called *fallacy*.

Examples:

(a) The following argument is valid:

 $p, p \rightarrow q \vdash q (Law of Detachment)$

To prove this rule look at the following truth table

р	q	$p \longrightarrow q$	$p \land (p \rightarrow q)$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	F
F	F	Т	F

Specifically, p and $p \rightarrow q$ are true only in case row 1, and in this case q is true.

(b) The following argument is a fallacy:

 $p \rightarrow q, q \vdash p$ (prove!).

Example: A fundamental principle of logical reasoning states: "If *p* implies *q* and *q* implies *r*, then *p* implies *r*"

p	9	r	[(p	→	q)	^	(q	→	r)]	→	(p	→	<i>r</i>)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т	F	F	Т	Т	F	F
Т	F	Т	Т	F	F	F	F	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	F	F	Т	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	Т	F	Т	F	F	Т	F	Т	F
F	F	Т	F	Т	F	Т	F	Т	Т	Т	F	Т	Т
F	F	F	F	Т	F	Т	F	Т	F	Т	F	Т	F
St	ep		1	2	1	3	1	2	1	4	1	2	1

That is, the following argument is valid: $p \rightarrow q$, $q \rightarrow r F p \rightarrow r$ (*Law of Syllogism*) This fact is verified by the above truth table which shows that the following proposition is a tautology: $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r).$ المرحلة/ الثانية - الفصل الاول المقرر/ الرياضيات المتقطعة

Example, consider the following argument:

 S_1 : If a man is a bachelor, he is unhappy.

*S*₂: If a man is unhappy, he dies young.

Conclusion: S : Bachelors die young

Here the statement *S* below the line denotes the conclusion of the argument, and the statements S_1 and S_2 above the line denote the premises. We claim that the argument S_1 , $S_2 \vdash S$ is valid. For the argument is of the form

 $p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$, where p is "He is a bachelor," q is "He is unhappy" and r is "He dies young". and by "Law of Syllogism" This argument is valid.

Propositional Functions , Quantifiers

Let *A* be a given set. *A propositional function* (or an *open sentence* or *condition*) defined on *A* is an expression p(x), which has the property that p(a) is true or false for each $a \in A$. The set *A* is called the *domain* of p(x), and the set *Tp* of all elements of *A* for which p(a) is true is called the *truth set* of p(x). In other words,

 $Tp = \{x \mid x \in A, p(x) \text{ is true}\} \text{ or } Tp = \{x \mid p(x)\}$

Note: Frequently ,when A is some set of numbers, the condition p(x) has the form of an equation or inequality involving the variable x.

Examples:

Find the truth set for each propositional function p(x) defined on the set N of positive integers.

(a) Let p(x) be "x + 2 > 7." Its truth set is {6, 7, 8, ...} consisting of all integers greater than 5. (b) Let p(x) be "x + 5 < 3." Its truth set is the empty set ϕ . That is, p(x) is not true for any integer in **N**.

(c) Let p(x) be "x + 5 > 1." Its truth set is **N**. That is, p(x) is true for every element in **N**.

<u>Note</u>: In the above examples: If p(x) is propositional function defined on a set *A* then p(x) could be true for all $x \in A$, for some $x \in A$, or for not $x \in A$.

<u>Remark</u>

Next we discuss quantifiers related to such propositional functions.

Universal Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

 $(\forall x \in A) p(x) \text{ or } \forall x p(x)$

which reads "For every x in A, p(x) is a true statement" or, simply, "For all x, p(x)." The symbol \forall , which reads "for all" or "for every" is called the *universal quantifier*. The above statement is equivalent to the statement

 $T_p = \{x \mid x \in A, p(x)\} = A$

that is, that the truth set of p(x) is the entire set A. So, we have a conclusion:

If $\{x | x \in A, p(x)\} = A$ then $\forall x p(x)$ is true; otherwise, $\forall x p(x)$ is false.

Examples

(a) The proposition $(\forall n \in \mathbf{N})(n + 4 > 3)$ is true since $\{n \mid n + 4 > 3\} = \{1, 2, 3, ...\} = \mathbf{N}$.

(b) The proposition $(\forall n \in \mathbf{N})(n + 2 > 8)$ is false since $\{n \mid n + 2 > 8\} = \{7, 8, ...\} \neq \mathbf{N}$.

(c) The symbol \forall can be used to define the intersection of an indexed collection $\{A_i | i \in I\}$ of sets A_i as follows:

 $\cap (A_i \mid i \in I) = \{x \mid \forall i \in I, x \in A_i\}.$

Existential Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

 $(\exists x \in A) p(x) \text{ or } \exists x, p(x),$

which reads "There exists an x in A such that p(x) is a true statement" or, simply, "For some x, p(x)."

The symbol \exists , which reads "there exists" or "for some" or "for at least one" is called the *existential quantifier*. Above statement is equivalent to the statement

 $T_p = \{x \mid x \in A, p(x)\} \neq \phi.$

i.e., that the truth set of p(x) is not empty. Accordingly, $\exists x p(x)$, that is, p(x) preceded by the quantifier \exists , does have a truth value. Specifically:

If $\{x \mid p(x)\} \neq \phi$ then $\exists x p(x)$ is true; otherwise, $\exists x p(x)$ is false.

Examples

(a) The proposition $(\exists n \in \mathbf{N})(n+4 < 7)$ is true since $\{n \mid n+4 < 7\} = \{1, 2\} \neq \phi$.

(b) The proposition $(\exists n \in \mathbf{N})(n+6 < 4)$ is false since $\{n \mid n+6 < 4\} = \phi$.

(c) The symbol \exists can be used to define the union of an indexed collection $\{A_i | i \in I\}$ of sets *A*i as follows:

$$\bigcup (A_i | i \in I) = \{x | \exists i \in I, x \in A_i\}.$$

المرحلة/ الثانية - الفصل الاول المقرر/ الرياضيات المتقطعة جامعة المستقبل كلية العلوم قسم تقنيات الانظمة الطبية الذكية

Negation of Quantified Statements

Consider the statement: "All math students are male." Its negation reads:

"It is not the case that all math students are male" or, equivalently, "There exists at least one math students who is a female (not male)"

Symbolically, using M to denote the set of math students, the above can be written as

 \neg ($\forall x \in M$) (x is male) = ($\exists x \in M$) (x is not male)

or, when p(x) denotes "x is male,"

 \neg ($\forall x \in M$) $p(x) \equiv (\exists x \in M) \neg p(x)$

Or $\neg \forall x \ p \ (x) \equiv \exists x \neg p \ (x).$

The above is true for any proposition p(x). That is:

Theorem (DeMorgan):

(a) $\neg (\forall x \in A)p(x) \equiv (\exists x \in A) \neg p(x)$

That is

(1) It is not true that for all a $\in A$, p (a) is true.

(2) There exists an a $\in A$ such that p (a) is false.

(b)
$$\neg (\exists x \in A) p(x) \equiv (\forall x \in A) \neg p(x).$$

That is

(1) It is not true that for some a $\in A$, p (a) is true.

(2) For all $a \in A$, p(a) is false

Example :

(a) The following statements are negatives of each other:

"For all positive integers *n* we have n + 2 greater than 8"

"There exists a positive integer n such that n + 2 not greater than 8"

(b) The following statements are also negatives of each other:

"There exists a (living) person who is 150 years old"

"Every living person is not 150 years old".

المرحلة/ الثانية - الفصل الاول المقرر/ الرياضيات المتقطعة جامعة المستقبل كلية العلوم قسم تقنيات الانظمة الطبية الذكية

Remark:

The expression $\neg p(x)$ has the obvious meaning:

"The statement $\neg p(a)$ is true when p(a) is false, and vice versa"

Previously, \neg was used as an operation on statements; here \neg is used as an operation on propositional functions.

Similarly, $p(x) \land q(x)$, read "p(x) and q(x)," is defined by:

"The statement $p(a) \land q(a)$ is true when p(a) and q(a) are true"

Similarly, $p(x) \lor q(x)$, read "p(x) or q(x)," is defined by:

"The statement $p(a) \lor q(a)$ is true when p(a) or q(a) is true"

Thus, in terms of truth sets:

(i) $\neg p(x)$ is the complement of p(x).

(ii) $p(x) \wedge q(x)$ is the intersection of p(x) and q(x).

(iii) $p(x) \lor q(x)$ is the union of p(x) and q(x).