
 
الفصل الاول -المرحلة/ الثانية                                                                                مستقبل      جامعة ال  

المقرر/ الرياضيات المتقطعة                                                                                       علوم       كلية ال  
 قسم تقنيات الانظمة الطبية الذكية

 

1 
 

                                            Lecture: 4 

                                                    Logic: Part Ⅳ                                                                                                                      
 

Algebra of Propositions 

     Propositions satisfy various laws which are listed in the table below. (In this table, T and F 

are restricted to the truth values “True” and “False,” respectively.) 

 

                                Laws of the algebra of propositions 

 

 

ARGUMENTS 

      An argument is an assertion that a given set of propositions P1, P2, . . . , Pn  called premises, 

yields, another proposition Q, called the conclusion. Such an argument is denoted by P1, P2, . . . , 

Pn Ⱶ Q 

The notion of a“logical argument” or “valid argument” is formalized as follows: 

Definitions 

Valid Argument: An argument P1, P2, . . . , Pn Ⱶ Q is said to be valid if Q is true whenever all 

the premises P1, P2, . . . , Pn are true. 

Fallacy: An argument which is not valid is called fallacy. 
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Examples:  
(a) The following argument is valid:   

        p, p → q Ⱶ q (Law of Detachment)  

To prove this rule look at the following truth table 

p q  p       q p ∧( p        q) 

T T T T 

T F F F 

F T T F 

F F T F 

 

Specifically , p and p          q are true only in case row 1, and in this case q is true . 

(b) The following argument is a fallacy:  

               p → q, q Ⱶ p                   (prove!). 

 

 

 

Example: A fundamental principle of logical reasoning states:  

“If p implies q and q implies r, then p implies r” 

 

 
 
That is, the following argument is valid: p → q, q → r Ⱶ p →r (Law of Syllogism)  

This fact is verified by the above truth table which shows that the following proposition is a tautology:  

                                            [(p → q) ∧ (q → r)] → (p → r). 
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Example, consider the following argument:  

                S1 : If a man is a bachelor, he is unhappy.  

                S2 : If a man is unhappy, he dies young.  

              

    Conclusion: S : Bachelors die young  

Here the statement S below the line denotes the conclusion of the argument, and the statements 

S1 and S2 above the line denote the premises. We claim that the argument S1, S2 Ⱶ S is valid. For 

the argument is of the form  

                                                  p → q, q → r Ⱶ p → r,  

where p is “He is a bachelor,” q is “He is unhappy” and r is “He dies young”.  

and by “Law of Syllogism” This argument is valid. 

 

Propositional Functions , Quantifiers 

 

     Let A be a given set. A propositional function (or an open sentence or condition) defined on 

A is an expression p(x), which has the property that p(a) is true or false for each a ∈ A.  

The set A is called the domain of p(x), and the set Tp of all elements of A for which p(a) is true 

is called the truth set of p(x). In other words,  

                    Tp = {x | x ∈ A, p(x) is true} or Tp = {x | p(x)}  

Note: Frequently ,when A is some set of numbers, the condition p(x) has the form of an 

equation or inequality involving the  variable x. 

 

Examples:  

 

    Find the truth set for each  propositional function p(x) defined on the set N of positive 

integers.  

(a) Let p(x) be “x + 2 > 7.” Its truth set is {6, 7, 8, . . .} consisting of all integers greater than 5.  

(b) Let p(x) be “x + 5 < 3.” Its truth set is the empty set ϕ. That is, p(x) is not true for any 

integer in N.  

(c) Let p(x) be “x + 5 > 1.” Its truth set is N. That is, p(x) is true for every element in N. 

Note: In the above examples: If p(x) is propositional function defined on a set A then p(x) could 

be true for all x ∈ A , for some x ∈ A , or for not  x ∈ A. 

Remark 

    Next we discuss quantifiers related to such propositional functions. 

 



 
الفصل الاول -المرحلة/ الثانية                                                                                مستقبل      جامعة ال  

المقرر/ الرياضيات المتقطعة                                                                                       علوم       كلية ال  
 قسم تقنيات الانظمة الطبية الذكية

 

4 
 

Universal Quantifier  

 

     Let p(x) be a propositional function defined on a set A. Consider the expression  

                      (∀x ∈ A) p(x)   or   ∀ x p(x)  

which reads “For every x in A, p(x) is a true statement” or, simply, “For all x, p(x).”  

The symbol ∀, which reads “for all” or “for every” is called the universal quantifier.  

The above statement is equivalent to the statement  

                       Tp = {x | x ∈ A, p(x)} = A  

that is, that the truth set of p(x) is the entire set A. So, we have a conclusion:  

               If {x| x ∈ A, p(x)} = A then ∀x p(x) is true; otherwise, ∀x p(x) is false.  

Examples  

(a) The proposition (∀n∈ N)(n + 4 > 3) is true since {n | n + 4 > 3} = {1, 2, 3, . . .} = N.  

(b) The proposition (∀n∈ N)(n + 2 > 8) is false since {n | n + 2 > 8} = {7, 8, . . .} ≠ N. 

(c) The symbol ∀ can be used to define the intersection of an indexed collection {Ai | i ∈ I } of 

sets Ai as follows:  

                    ∩(Ai | i ∈ I) = {x | ∀i ∈ I, x ∈ Ai }. 

 

Existential Quantifier 

    Let p(x) be a propositional function defined on a set A. Consider the expression 

                   (∃x ∈ A) p(x) or ∃x, p(x), 

which reads “There exists an x in A such that p(x) is a true statement” or, simply, “For 
some x, p(x).” 

The symbol ∃, which reads “there exists” or “for some” or “for at least one” is called the 

existential quantifier. Above statement is equivalent to the statement 

                    Tp = {x | x ∈ A, p(x)} ≠ ϕ. 

i.e., that the truth set of p(x) is not empty. Accordingly, ∃x p(x), that is, p(x) preceded by the 

quantifier ∃, does have a truth value. Specifically: 

                   If {x | p(x)} ≠ϕ then ∃x p(x) is true; otherwise, ∃x p(x) is false. 

Examples 

(a) The proposition (∃n ∈ N)(n + 4 < 7) is true since {n | n + 4 < 7} = {1, 2} ≠ϕ. 

(b) The proposition (∃n ∈ N)(n + 6 < 4) is false since {n | n + 6 < 4} =ϕ . 

(c) The symbol ∃ can be used to define the union of an indexed collection {Ai | i ∈ I } of sets 

Ai as follows: 

         ∪(Ai | i ∈ I) = {x | ∃ i ∈ I, x ∈ Ai }. 
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Negation of Quantified Statements  

 

      Consider the statement: “All math students are male.” Its negation reads:  

“It is not the case that all math students are male” or, equivalently, “There exists at least one  

math students who is a female (not male)”  

Symbolically, using M to denote the set of math students, the above can be written as  

          ￢(∀x ∈  M) (x is male) ≡ (∃ x ∈ M) (x is not male)  

or, when p(x) denotes “x is male,”  

          ￢(∀x ∈M) p(x) ≡ (∃ x ∈ M)￢p(x) 

 Or      ￢∀x p (x) ≡ ∃ x￢ p (x).  

The above is true for any proposition p(x). That is:  

 

Theorem (DeMorgan):  

 (a) ￢(∀x ∈ A)p(x) ≡ (∃ x ∈ A)￢p(x)    

   That is  
                (1) It is not true that for all a ∈ A , p (a) is true. 
                (2) There exists an a ∈ A such that p (a) is false. 

          (b) ￢(∃x ∈ A)p(x) ≡ (∀x ∈ A)￢p(x).  

             That is 
(1) It is not true that for some a ∈ A , p (a) is true. 

(2) For all  a ∈ A , p (a) is false 

Example : 

(a) The following statements are negatives of each other:  

                            “For all positive integers n we have n + 2 greater than 8”  

                            “There exists a positive integer n such that n + 2 not greater than 8”   

(b) The following statements are also negatives of each other:  

                            “There exists a (living) person who is 150 years old”  

                            “Every living person is not 150 years old”. 
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Remark: 

The expression ￢p(x) has the obvious meaning:  

                    “The statement ￢p(a) is true when p(a) is false, and vice versa”  

Previously, ￢ was used as an operation on statements; here ￢ is used as an operation on 

propositional functions.  

Similarly, p(x) ∧ q(x), read “p(x) and q(x),” is defined by:  

                    “The statement p(a) ∧ q(a) is true when p(a) and q(a) are true”  

Similarly, p(x) ∨ q(x), read “p(x) or q(x),” is defined by:  

                    “The statement p(a) ∨ q(a) is true when p(a) or q(a) is true”  

Thus, in terms of truth sets:  

       (i) ￢p(x) is the complement of p(x).  

       (ii) p(x) ∧ q(x) is the intersection of p(x) and q(x).  

       (iii) p(x) ∨ q(x) is the union of p(x) and q(x). 

 

 

 

 

 

 

 


