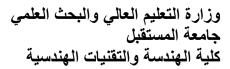


GLP-F020

اسم القسم: هندسة تقنيات الأجهزة الطبية / اسم المختبر: النظم الالكترونية الطبية / المرحلة: الثالثة / رمز المختبر: BL 406

سجل التجارب للعام الدراسي 2024-2023

Experiment No.2: Integrated Voltage Regulation


Objectives:

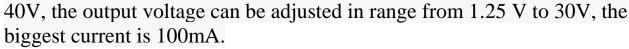
The objective of an adjustable voltage regulator circuit, often implemented using devices like the LM317, is to provide a stable and regulated output voltage that can be adjusted to a desired level.

What is the Voltage Regulator?

The voltage regulation in a power supply system can be achieved using an electrical or electronic device called a voltage regulator. There are different types of voltage regulators such as Fixed voltage regulators and Variable voltage regulators. These are again subdivided into many types as Electronic voltage regulators, Electro-mechanical regulators, Automatic voltage regulators, linear voltage regulators, Switching regulators, LM317 voltage regulators, Hybrid regulators, SCR regulators, and so on.

LM317 Voltage Regulator

The LM317 is a three-terminal adjustable voltage regulator IC, and its principle of operation involves maintaining a stable output voltage regardless of changes in the input voltage and load conditions.

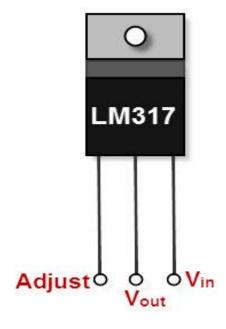

Three-Terminal Device:

Input (V_{in}): This is the input voltage that needs to be regulated.

Output (V_{out}) : This is the regulated output voltage.

Adjust (ADJ): This terminal is used to adjust the output voltage.

the highest input voltage of LM317 is

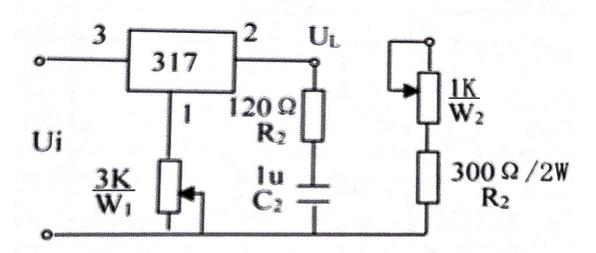

One of the primary features of the LM317 is its ability to provide a variable and adjustable output voltage. By connecting external resistors, the output voltage can be set to a desired level within a specified range. The output voltage (V_{out}) can be calculated using the formula:

$$V_{out} = V_{ref} * \left(1 + \frac{R_2}{R_1}\right) + I_{adj} * R_2$$

Where:

- V_{ref} is the internal reference voltage (approximately 1.25V).
- R₁ and R₂ are external resistors.
- I_{adj} is the adjustment terminal current (typically very small, around $50\mu A).$

the LM317 regulates the output voltage by adjusting the current flow through an internal pass transistor based on feedback from the voltage


across a resistor network. This feedback mechanism ensures a stable and adjustable output voltage, making the LM317 a versatile component for various voltage regulation applications.

Equipment and Tools:

- 1. Analog Circuit Experimental Box
- 2. Oscilloscope
- 3. Function Generator

The method of work:

- 1. Connect the experimental circuit according to figure below:
- 2. Draw the input and output voltage waveforms.
- 3. Change the variable resistor, then draw the output voltage waveform.

