Heat Transfer by Extended Surfaces

 (Fins)Proof. Dr. Majid H. Majeed

Heat transfer from Extended Surfaces

The heat transfer by convection is increased by increasing the area that exposed to convection. This led to increase the area of heat transfer in some application that need high heat transfer rate. The increasing of the area of heat transfer is done by extending the surfaces that exposed to convection. This extended surfaces is called fines as shown in

Figure

Equation of Fin

- Let us consider an element from a fin at x location with length $\Delta \mathrm{x}$ and sectional area A_{c} and its perimeter of p as shown in Figure. The equation of energy balance for steady state condition of this element can be expressed as:

$\left\{\begin{array}{l}\text { Conduction Heat } \\ \text { Transfer Rate int } o \\ \text { The Element at } x\end{array}\right\}-$	$\left\{\begin{array}{c}\text { Conduction Heat } \\ \text { Transfer Rate from } \\ \text { The Element at } x+\Delta x\end{array}\right\}=\left\{\begin{array}{c}\text { Convection Heat } \\ \text { Transfer Rate from } \\ \text { The Element }\end{array}\right\}$
	$\dot{Q}_{\text {cond } x}-\dot{Q}_{\text {cond } x+\Delta x}=\dot{Q}_{\text {comr }}$

And $\quad \dot{Q}_{\text {cond. } x+d x}=-k A \frac{d T}{d x}+\frac{d}{d x}\left(-k A \frac{d T}{d x}\right) d x$

And $\dot{\text { Q }}_{\text {conv }}=h P d x\left(T-T_{\infty}\right)$
$k / A \frac{d T}{d x}-\left[-k A \frac{d T}{d x}+\frac{d}{d x}\left(-k A \frac{d T}{d x}\right) d x\right]$
$=h P d x\left(T-T_{\infty}\right)$
$k_{7} \frac{d^{2} T}{d x^{2}} d x=h p d x\left(T-T_{\infty}\right)$

- By dividing this equation by kAdx, we get
- $\frac{d^{2} T}{d x^{2}}-\frac{h p}{k A}\left(T-T_{\infty}\right)=0$
- By assuming $\theta=T-T_{\infty}$ then $\frac{d \theta}{d x}=\frac{d T}{d x}$ and
- $\frac{d^{2} \theta}{d x^{2}}=\frac{d^{2} T}{d x^{2}}$. And $\frac{h P}{k A}=m^{2}$
$\frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0$
The solution of this equation is
- $\theta=C_{1} e^{-m x}+C_{2} e^{m x}$
- Where C1 and C2 are integration constants of arbitrarily whose values are to be determined by the applying of the boundary conditions.
- These boundary conditions are at the base and at the tip of the fin.
- The only two conditions are to be needed to determine C 1 and C 2 which are uniquely.
- B.C. 1 is that temperature at the base of fin is known at its value is at $x=0 T=T_{o}$
Then $\theta=T_{o}-T_{\infty} \rightarrow \theta=\theta_{o}$
- By substituting in eq.(A) $\mathrm{x}=0$ and $\theta=\theta_{o}$

$$
\begin{equation*}
\theta_{o}=C_{1}+C_{2} \tag{1}
\end{equation*}
$$

- The second boundary depending on the free end of the fin. There are three cases for this end.
- Case 1. the fin is very long that at $\mathrm{x}=\infty \quad T=T_{\infty}$
- It means that at $x=\infty \quad \theta=T_{\infty}-T_{\infty}=0$
- Then $\theta=C_{1} e^{-m \infty}+C_{2} e^{m \infty}=0$
- Fropn this equation $C_{1} \neq 0$, then $C_{2}=0$
- By substituting this in eq.(1) we get
$=\theta_{o}$
$\theta=\theta_{o} e^{-m x} \quad$ (T.D.E) for long fin

$$
\begin{equation*}
\frac{\theta}{\theta_{0}}=\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=e^{-\sqrt{\frac{h p}{k A}} x} \tag{3}
\end{equation*}
$$

1- long fin

- Heat transfer from fin is equal to heat flow from its base by conduction
- $\left.\left.\dot{Q}_{f i n}=-k A \frac{d T}{d x}\right)_{x=0}=-k A \frac{d \theta}{d x}\right)_{x=0}=-k A \frac{d}{d x}\left(\theta_{0} e^{-\sqrt{\frac{h P}{k A}} x}\right)_{x=0}$
$=-k A\left(-\theta_{0} \sqrt{\frac{h P}{k A}}\right) e^{-0}=\sqrt{h P k A} \theta_{0}$
$\dot{Q}_{f i n}=\sqrt{h P k A}\left(T_{o}-T_{\infty}\right)$
- Also heat transfer from fin is equal to heat

11 transfer by convection

- from all the fin.
- $\dot{Q}_{f i n}=\int_{o}^{\infty} h P\left(T-T_{\infty}\right) d x=\int_{0}^{\infty} h P \theta d x$
- $\left.\dot{Q}_{f i n}=h P \int_{0}^{\infty} \theta_{0} e^{-m x} d x=-h P \frac{\theta_{0}}{m} e^{-m x}\right]_{0}^{\infty}$
- $\dot{Q}_{\text {fin }}=-\frac{h P \theta_{o}}{\sqrt{\frac{n P}{k A}}}\left(e^{-\infty}-e^{0}\right)=-\sqrt{h P k A} \theta_{o}(0-1)$
$\dot{Q}_{f i n}=\sqrt{h P k A} \theta_{o}$
It equal to that transfer from the base so it is O.K.

2- short Insulated end fin

in this case the fin is of known length and its end is insulated.

The boundary conditions are
B.C. 1 is as in eq.(1) $T=T_{o}$ at $\mathrm{x}=0$
B.C. 2 is at $\mathrm{x}=\mathrm{L} \frac{d T}{d x}=0$ for insu

The T.D.E is $\frac{\theta(x)}{\theta_{0}}=\frac{T(x)-T_{\infty}}{T_{o}-T_{\infty}}=\frac{\cos }{c}{ }^{\mathrm{T}=\mathrm{T}}{ }_{x=0}$ insulated
Heat transfer from the fin is

$$
\dot{Q}_{f i n}=\sqrt{h P k A} \theta_{o} \tanh (m L)
$$

3- Short non insulated end fin

Fin with heat transfer by convection from its end.

B.C. 1 is as in eq. 1 at $\mathrm{x}=0 T=T_{o}$ or $\theta=\theta_{o}$ B.C. 2 at $\left.\mathrm{x}=\mathrm{L} \quad-k \frac{d \theta}{d x}\right)_{x=L}=h \theta_{L}$

$$
\frac{\theta(x)}{\theta_{o}}=\frac{T(x)-T_{\infty}}{T_{o}-T_{\infty}}=\frac{\cosh [m(L-x)]+\frac{h}{m k} \sinh [m(L-x)]}{\cosh (m L)+\frac{h}{m k} \sinh (m L)}
$$

$$
\dot{Q}_{F i n}=\sqrt{h p k A_{c}} \theta_{o} \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)}
$$

- Fin efficiency

$$
\eta_{\text {Fin }}=\frac{[\text { Actual Heat Transfer from Fin }]}{\left[\begin{array}{l}
\text { Heat Transfer from Fin When } \\
\text { The Entire Fin Area at Base Temp. }
\end{array}\right]}
$$

The efficiency of long fin is

$$
\begin{gathered}
\eta_{\text {Fin }}=\frac{\dot{\mathcal{Q}}_{\text {Fin }}}{h A_{\text {fin }} \theta_{o}} \\
\eta_{\text {Fin }}=\frac{\dot{Q}_{\text {Fin }}}{h A_{\text {fn }} \theta_{0}}=\frac{\sqrt{h p k d_{c}} \theta_{0}}{h p L \theta_{0}}=\sqrt{\frac{k A_{c}}{h p}} \frac{1}{L}=\frac{1}{m L}
\end{gathered}
$$

Fin effectiveness

$$
\varepsilon_{f i n}=\frac{\left[\begin{array}{l}
\text { Heat Transfer Rate From } \\
\text { The Fin of Base Area } A_{0}
\end{array}\right]}{\left[\begin{array}{l}
\text { Heat Transfer Rate From } \\
\text { The Surface of Area } A_{0}
\end{array}\right]}=\frac{\dot{Q}_{\text {Fin }}}{\dot{Q}_{n o \text { Fin }}}=\frac{\dot{Q}_{\text {Fin }}}{A_{0} h\left(T_{o}-T_{\infty}\right)}
$$

- And also we can find the flowing charts to find the 15 ficiency of fin.

15

- heat transfer from the fin
- $\quad \dot{Q}_{f}=\eta_{f} A_{f} h\left(T_{o}-T_{\infty}\right)$

Long Fin specifications

Specifications	Mathematic Relation
Boundary condifions	$\begin{array}{lllll} \text { B.C.1 } \quad \mathrm{x}=0 & T=T_{o} & \text { or } & \theta=\theta_{o}= \\ \left(T_{o}-T_{\infty}\right) & & & \\ \text { B.C. } \quad \text { x=m } & T=T_{\infty} & \text { or } & \theta=0= \\ \left(T_{\infty}-T_{\infty}\right)=0 & & & \end{array}$
T.D.E	$\theta=\theta_{o} e^{-m x}$ or $\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=\exp \left(-\sqrt{\frac{h P}{k A}} x\right)$
Heat transfer	$\dot{Q}_{f i n}=\sqrt{h P k A} \theta_{o}=\sqrt{h P k A}\left(T_{o}-T_{\infty}\right)$
Fin efficiency n_{f}	$\eta_{f i n}=\frac{1}{m L}=\sqrt{\frac{k A}{h P}} \frac{1}{L}$
Fin effectiveness $\varepsilon_{\text {\& }}$	$\varepsilon_{f i n}=\sqrt{\frac{P k}{A_{o} h}}$

Insulated end fin

Specifications
Boundary B.C. $1 \quad \mathrm{x}=0 \quad T=T_{o}$ or $\theta=\theta_{o}=$
condifions
($T_{o}-T_{\infty}$)

$$
\text { B.C. } 2 x=\mathrm{L} \quad \frac{d T}{d x}=0 \quad \text { or } \quad \frac{d \theta}{d x}=0
$$

T.D.E

$$
\begin{aligned}
& \frac{\theta}{\theta_{o}}=\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=\frac{\cosh [m(L-x)]}{\cosh (m L)} \\
& \dot{Q}_{f i n}=\sqrt{h P k A} \theta_{o} \tanh (m L)
\end{aligned}
$$

$$
\dot{Q}_{f i n}=\sqrt{h P k A}\left(T_{o}-T_{\infty}\right) \tanh (m L)
$$

Fin efficiency
η_{i}

$$
\eta_{f i n}=\frac{\tanh (m L)}{m L}
$$

Fin
effectiveness
$\varepsilon_{f i n}=\sqrt{\frac{P k}{A_{o} h}} \tanh (m L)$
ε_{f}

Convection from end tip

Specifications

Boundary condifions

T.D.E

Heał łransfer

Mathematic Relation

$$
\begin{aligned}
& \text { B.C. } 1 \mathrm{x}=0 \quad T=T_{o} \quad \text { or } \quad \theta=\theta_{o}=\left(T_{o}-T_{\infty}\right) \\
& \text { B.C. } 2 \mathrm{x}=\mathrm{L} \quad \frac{d T}{d x}=-\frac{L}{k}\left(T_{L}-T_{\infty}\right) \text { or } \frac{d \theta}{d x}=-\frac{h}{k} \theta_{L} \\
& \frac{\theta}{\theta_{o}}=\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=\frac{\cosh (m(L-x))+\frac{h}{k m} \sinh (m(L-x))}{\cosh (m L)+\frac{h}{k m} \sinh (m L)} \\
& \dot{Q}_{\text {fin }}=\sqrt{h P k A} \theta_{o} \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)} \\
& \dot{Q}_{\text {fin }}=\sqrt{h P k A}\left(T_{o}-T_{\infty}\right) \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)}
\end{aligned}
$$

$$
\eta_{f i n}=\frac{1}{m L} \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)}
$$

Fin effectiveness ε_{f}

$$
\varepsilon_{f \text { in }}=\sqrt{\frac{P k}{A_{o} h}} \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)}
$$

- Example: A fin of material with thermal conductivity (100W/m. ${ }^{\circ} \mathrm{C}$). The length of the fin is 0.5 m . The fin of square cross section of side length 0.1 m . The base temperature of the fin is $100^{\circ} \mathrm{C}$. The surrounding temperature and convection heat transfer coefficient are $20^{\circ} \mathrm{C}$ and $20 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$. Find the temperature Distribution equation and draw that with length of fin. Find the heat transfer and fin efficiency and effectiveness. By 1) assuming the fin of infinite length, 2) insulted end fin, 3) non-insulted fin.
- Solution: Fin of length $L=0.5 \mathrm{~m}$, It is of square cross section of side length $\mathrm{b}=0.1 \mathrm{~m}$ the $\mathrm{P}=4 \mathrm{~b}=0.4 \mathrm{~m}$ and $\mathrm{A}=b^{2}=0.1 \times 0.1=0.01 \mathrm{~m}^{2}$.
- The base temperature $T_{o}=100^{\circ} \mathrm{C}$.
- The surrounding temperature $T_{\infty}=20^{\circ} \mathrm{C}$
- The heat transfer coefficient $h=10 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ}{ }^{\circ} \mathrm{C}$
- Thermal conductivity of fin material $\mathrm{k}=100 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$
Properties: The properties are constant.
Assumption: straight constant cross-sectional area fin with steady state heat conduction.
- Analysis: for the fin, we can determined firstly m.

$$
m=\sqrt{\frac{h P}{k A}}=\sqrt{\frac{10 \times 0.4}{100 \times 0.01}}=2 m^{-1}
$$

- 1-Long Fin

21 The T.D.E $\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=\exp \left(-\sqrt{\frac{h P}{k A}} x\right)=e^{-m x}=e^{-2 x}$

- $\frac{T-20}{100-20}=\frac{T-20}{80}=e^{-2 x}$
- 2- insulated fin
- $\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=\frac{\cosh [m(L-x)]}{\cosh (m L)}$
- $\frac{T-20}{100-20}=\frac{\cosh [2(0.5-x)]}{\cosh (2 \times 0.5)}$
- Convective end tip fin

\mathbf{x}	$\mathbf{T}(1)$	$\mathrm{T}(2)$	$\mathrm{T}(3)$
0	100	100	100
0.05	92.39	94.30	93.29
0.1	85.50	89.34	88.23
0.15	79.26	85.07	83.85
0.2	73.62	81.46	80.10
0.25	68.52	78.46	76.96
0.3	63.90	76.05	74.39
0.35	59.72	74.20	72.36
0.4	55.9	72.88	70.46
0.45	52.52	72.10	69.87
0.5	49.43	71.84	69.37

$\frac{T-20}{100-20}=\frac{\cosh (2(0.5-x))+\frac{10}{200} \operatorname{sinsh}(2(0.5-x))}{\cosh (0.5 \times 2)+\frac{10}{200} \sinh (0.5 \times 2)}$

- The heat transfer from the fin
- $\dot{Q}_{f \text { in }}=\sqrt{10 \times 0.4 \times 100 \times 0.01}(100-20)=160 W$
- 2) insulated end tip fin
- $\dot{Q}_{f i n}=\sqrt{h P k A}\left(T_{o}-T_{\infty}\right) \tanh (m L)$
- $\dot{Q}_{f i n}=\sqrt{10 \times 0.4 \times 100 \times 0.01}(100-20) \tanh (2 \times 0.5)$ $=121.855 \mathrm{~W}$
- 3) convective end fin

$$
\dot{Q}_{f i n}=\sqrt{h P k A}\left(T_{o}-T_{\infty}\right) \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)}
$$

- $\dot{Q}_{f i n}=160 \frac{\sinh (1)+0.05 \cosh (1)}{\cosh 1+0.05 \sinh (1)}=125.1 \mathrm{~W}$
- Fin efficiency

1) long fin $\eta_{f i n}=\frac{1}{m L}=\sqrt{\frac{k A}{h P}} \frac{1}{L}$

- $\eta_{\text {fin }}=\frac{1}{m L}=\sqrt{\frac{100 \times 0.01}{10 \times 0.4}} \frac{1}{0.5}=100 \%$
- 2) insulated tip fin $\quad \eta_{f i n}=\frac{\tanh (m L)}{m L}$
- $\eta_{\text {fin }}=\frac{\tanh (2 \times 0.5)}{2 \times 0.5}=76.16 \%$
- 3) convective end fin $\eta_{f i n}=\frac{1}{m L} \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)}$
- $\eta_{\text {fin }}=\frac{1}{2 \times 0.5} \frac{\sinh (1.0)+\frac{10}{2 \times 100} \cosh (1.0)}{\cosh (1.0)+\frac{10}{2 \times 1000} \sinh (1.0)}=78.18 \%$
- Fin effectiveness

1) long Fin $\varepsilon_{f i n}=\sqrt{\frac{P k}{A_{o} h}}=\sqrt{\frac{0.4 \times 100}{0.01 \times 10}}=20$

- 2) Insulated tip fin $\varepsilon_{\text {fin }}=\sqrt{\frac{0.4 \times 100}{0.1 \times 10}} \tanh (2 \times 0.5)$
- $\varepsilon_{f i n}=15.23$
- 3) convective end tip fin

$$
\begin{aligned}
& \varepsilon_{f \text { fin }}=\sqrt{\frac{P k}{A_{o} h}} \frac{\sinh (m L)+\frac{h}{k m} \cosh (m L)}{\cosh (m L)+\frac{h}{k m} \sinh (m L)} \\
& \varepsilon_{\text {fin }}=20 \frac{\sinh (1.0)+0.05 \cosh (1.0)}{\cosh (1.0)+0.05 \sinh (1.0)}=15.30
\end{aligned}
$$

Transient Heat conduction

- In this case the temperature be function on time as it is function of dimensions.
- $T=T(x, y, z, \tau)$
- LUMPED SYSTEM CONCEPT

(a) metal with constant Temp. distribution

(b) Roast be ef with variation in temp. with location
- Consider a cold solid of arbitrary shape, with mass m , initially at a uniform temperature To, suddenly immersed into a higher-temperature environment. As heat flows the hot environment into the cold body, the temperature of the solid increases. It is assumed that the lumped system approximation is applicable, namely, that the distribution of temperature within the solid at any instant can be regarded as almost uniform (i.e., the temperature gradients within the solid are neglected).
$\left\{\begin{array}{l}\text { Increase of the Internal } \\ \text { Energy of the Solid Over } \\ \text { the Time Interval d } \tau\end{array}\right\}=\left\{\begin{array}{l}\text { Heat Transfer to the Solid } \\ \text { Through the outer surface } \\ \text { Over the Time Interval d } \tau\end{array}\right\}$

Where ρ, C, and V are density, specific heat, and volume of the solid body respectively. The temperature of the solid body T is a function of time, $\mathrm{T}=\mathrm{T}(\tau)$.
Let $Q(\tau)$ be the total heat rate following into the body fhrough its boundary surfaces at any instant τ.

$$
\left\{\begin{array}{l}
\text { Heat Transfer to the Solid } \\
\text { Through the Outer Surface } \\
\text { Over the Time Interval d } \tau
\end{array}\right\}=\dot{Q}(\tau) d \tau
$$

$$
\begin{array}{r}
\rho V C d T=\dot{Q}(\tau) d \tau \\
\frac{d T(\tau)}{d \tau}=\frac{\dot{Q}(\tau)}{\rho V C}
\end{array}
$$

For Convection Heat Transfer

$$
\begin{gathered}
\dot{Q}(\tau)=A_{s} h\left[T_{\infty}-T(\tau)\right] \\
\frac{d T(\tau)}{d \tau}=\frac{A_{s} h}{\rho V C}\left[T_{\infty}-T(\tau)\right] \\
\frac{d T(\tau)}{d \tau}=-\frac{A_{s} h}{\rho V C}\left[T(\tau)-T_{\infty}\right] \quad \text { for } \tau>0 \\
T(\tau)=T_{i}
\end{gathered}
$$

- For convenience in the analysis, we measure the temperature in excess of the ambient temperature T_{∞}; that is, we choose T_{∞} as the reference temperature. Then assume that:

$$
\theta(\tau)=T(\tau)-T_{\infty}
$$

$$
\theta_{i}=T_{i}-T_{\infty} \quad \& \quad \frac{d T(\tau)}{d \tau}=\frac{d \theta(\tau)}{d \tau}
$$

And also a quantity m is introduced as

$$
m=\frac{A_{s} h}{\rho V C}
$$

- Where m has the dimension of $(\text { time })^{-1}$.

$$
\begin{gathered}
\frac{d \theta(\tau)}{d \tau}+m \theta=0 \\
\theta(\tau)=\theta_{i}
\end{gathered}
$$

for $\tau>0$
for $\tau=0$

And by the separating of variables, we get

$$
\frac{d \theta(\tau)}{\theta(\tau)}=-m d \tau
$$

The integration of this equation will give $\ln \theta(\tau)=-m \tau+C$
Where C is the integrating constant.

$$
\ln \theta_{i}=-(m) 0+C \rightarrow \quad C=\ln \theta_{i}
$$

$$
\ln \theta(\tau)=-m \tau+\ln \theta_{i}
$$

$$
\ln \theta(\tau)-\ln \theta_{i}=-m \tau \rightarrow \quad \ln \left(\frac{\theta(\tau)}{\theta_{i}}\right)=-m \tau
$$

$$
\frac{\theta(\tau)}{\theta}=e^{-m \tau}
$$

$$
\frac{T(\tau)-T_{\infty}}{T_{i}-T_{\infty}}=e^{-\frac{A_{s} h}{\rho V C} \tau}
$$

We can now find the relation of the characteristic length $\left(L_{c}\right)$ value for some geometries such as

- $L_{C}=\frac{V}{A_{s}}$

1- A solid sphere

$$
\begin{aligned}
& L_{c}=\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}=\frac{R}{3}=\frac{D}{6} \\
& L_{c}=\frac{L^{3}}{6 L^{2}}=\frac{L}{6}
\end{aligned}
$$

2- A solid cube
3- A solid cylinder of length $\mathrm{L} \quad L_{c}=\frac{\pi L R^{2}}{2 \pi R L+2 \pi R^{2}}=\frac{L R}{2(L+R)}$
4- A solid long cylinder

$$
L_{c}=\frac{\pi R^{2} L}{2 \pi R L}=\frac{R}{2}=\frac{D}{4}
$$

5- A solid large plate with thickness L and one side surface area A^{*}

$$
L_{c}=\frac{A^{*} L}{2 A^{*}}=\frac{L}{2}
$$

Criteria For Lumped system Analysis

$$
B i=\frac{\text { ConvectionatTheSurfaceof the Body }}{\text { ConductionWithinThe Body }}=\frac{h}{k / L_{c}} \frac{\Delta T}{\Delta T}=\frac{h L_{c}}{k}
$$

$$
B i=\frac{\text { Conduction Re sis tanceWithin the Body }}{\text { Convection Re sis tanceat The Surfaceof the Body }}=\frac{L_{c} / k}{1 / h}=\frac{h L_{c}}{k}
$$

A small Biot number means that a small heat conduction resistance and thus a small temperature gradient within the body. In general, the analysis lumped system can be applied

$$
B i \leq 0.1
$$

The parameter ($\mathrm{m} \tau$) can be modified by the following

$$
\begin{aligned}
& m \tau=\frac{h}{\rho C L_{c}} \tau=\frac{h}{\rho C L_{c}} \frac{k L_{c}}{k L_{c}} \tau=\frac{h L_{c}}{k} \frac{k}{\rho C} \frac{1}{L_{c}^{2}} \tau \\
& m \tau=\frac{h L_{c}}{k} \frac{\alpha \tau}{L_{c}^{2}}=B i \cdot F 0
\end{aligned}
$$

Where Fo is the Fourier Number

$$
\frac{T(\tau)-T_{\infty}}{T_{i}-T_{\infty}}=e^{-B_{i} F_{o}}
$$

- Example Using lumped system method, determine the time required for a solid steel ball of radius (3 cm), thermal conductivity ($55 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$), density ($7830 \mathrm{~kg} / \mathrm{m}^{3}$), and specific heat ($460 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$) to cool from ($1000^{\circ} \mathrm{C}$) to $\left(250^{\circ} \mathrm{C}\right)$. If the ball is exposed to stream of air at $\left(100^{\circ} \mathrm{C}\right)$ having a coefficient of heat transfer (100W/m ${ }^{2}$. ${ }^{o} \mathrm{C}$).
- Solution: In this problem the time of cooling steel ball from $\left(1000^{\circ} \mathrm{C}\right)$ to $\left(250^{\circ} \mathrm{C}\right)$ by using the lumped capacity method when the ball is facing to convection heat transfer with coefficient of heat transfer of ($100 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$) and environment temperature of $\left(100^{\circ} \mathrm{C}\right)$. The radius of the ball $\mathrm{R}=0.03 \mathrm{~m}$.
- Assumption: The ball material thermal properties and the coefficient of heat transfer are constant. The radiation effect is negligible. There is no temperature gradient through the ball.
- Properties: The properties of the ball material are constant and they are $\mathrm{k}=55 \mathrm{~W} / \mathrm{m} . \mathrm{oC}$, $\rho=7830 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}=460 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.
- Analysis: The characteristic length of the ball with $R=3 \mathrm{~cm}$ is:
- $L_{c}=\frac{R}{3}=\frac{0.03}{3}=0.01 \mathrm{~m}$
- $m=\frac{h}{\rho C L_{c}}=\frac{100}{7830 \times 460 \times 0.01}=0.00278 \mathrm{~s}^{-1}$
- Now to find the time spending for cooling is

$$
\begin{aligned}
& \frac{T(\tau)-T_{\infty}}{T_{i}-T_{\infty}}=e^{-m \tau} \quad \rightarrow \frac{250-100}{1000-100}=-0.00277 \tau \\
& \tau=-\frac{1}{0.00277} \ln \left(\frac{150}{900}\right)=646.8 \mathrm{sec}=10.78 \mathrm{~min}
\end{aligned}
$$

- The checking for lumped system criteria we can find Biot number
- $B i=\frac{h L_{c}}{K}=\frac{100 \times 0.01}{55}=0.018>0.1$

