Heat Conduction Equation

Proof Dr. Majid H. Majeed

Heat Conduction Equation

- One dimensional (Plane wall)
- Steady state with no heat generation is

$$
\frac{d}{d x}\left(A k \frac{d T}{d x}\right)=0
$$

- When A=constant, and
- K= constant, then

$$
\frac{d^{2} T}{d x^{2}}=0
$$

Heat Conduction Equation

- To integrate this equation we will fixed the boundary conditions at first
- At $\mathrm{X}=0 \quad T=T_{1}$
- At X=L $\quad T=T_{2}$
$\frac{d^{2} T}{d x^{2}}=0 \rightarrow \frac{d}{d x}\left(\frac{d T}{d x}\right)=0$
- By first integration

- $\left(\frac{d T}{d x}\right)=C_{1}$
- where C_{1} : integration constant

Heat Conduction Equation

- And by second integration
- $T=C_{1} x+C_{2}$
- Applying the Boundary conditions
- B.C. $1 \quad T_{1}=C_{1} \times 0+C_{2} \rightarrow C_{2}=T_{1}$
- B.C. $2 \quad T_{2}=C_{1} \mathrm{~L}+T_{1} \rightarrow C_{2}=\frac{1}{L}\left(T_{2}-T_{1}\right)$

Then the temperature distribution equation (T.D.E.) is

- $\mathrm{T}(x)=\left(T_{2}-T_{1}\right) \frac{x}{L}+T_{1}$

Heat Conduction Equation

$$
\operatorname{Or} T(x)=\left(1-\frac{x}{L}\right) T_{1}+\frac{x}{L} T_{2}
$$

Example 1. Wall of thickness 0.5 m . The temperature at one Side is
$100^{\circ} \mathrm{C}$ and at other side is 20°. Find the temperature distribution equation, and the heat transfer per unit area. Thermal conductivity is 2W $/ m .{ }^{0} C$

Example

- Solution: Plane Wall with boundary conditions
- B.C. $1 \quad \mathrm{x}=0 \quad T=T_{1}=100^{\circ} \mathrm{C}$
- B.C. $2 \quad \mathrm{x}=\mathrm{L}=0.5 \mathrm{~m} \quad \mathrm{~T}=\mathrm{T}_{2}=20^{\circ} \mathrm{C}$
- We can repeat the solution
- $\frac{d^{2} x}{d x^{2}}=0$ by double integration, we get
$T=\left(T_{2}-T_{1}\right) \frac{x}{L}+T_{1}=\left(1-\frac{x}{L}\right) T_{1}+\frac{x}{L} T_{2}$
- $T=\left(1-\frac{x}{0.5}\right) 100+\frac{x}{0.5} 20$

Example

- $q=k \frac{T_{1}-T_{2}}{\Delta x}=2 \frac{100-20}{0.5}=320 \mathrm{~W}$
- Find the temperature at mid point of the wall
- At mid point $x=0.25 m$
- Then $T=\left(1-\frac{x}{0.5}\right) 100+\frac{x}{0.5} 20$

$$
T=\left(1-\frac{0.25}{0.5}\right) 100+\frac{0.25}{0.5} 20=60^{\circ} C
$$

Heat Conduction Equation

- Plane Wall with thermal conductivity function of temperature
- $k=k_{o}+k_{1} T$
- Where k_{o} and k_{1} are constant
- $\frac{d}{d x}\left(k \frac{d T}{d x}\right)=0 \rightarrow \frac{d}{d x}\left(\left(k_{o}+k_{1} T\right) \frac{d T}{d x}\right)=0$
- By integrating $\quad\left(k_{o}+k_{1} T\right) \frac{d T}{d x}=C_{1}$

$$
\left(k_{o}+k_{1} T\right) d T=C_{1} d x
$$

- Second integrating $\left(k_{o} T+\frac{1}{2} k_{1} T^{2}\right)=C_{1} x+C_{2}$
- By applying the Boundary conditions that are $\mathrm{X}=0 \quad T=T_{1} \quad$ and $\quad \mathrm{x}=\mathrm{L} \quad T=T_{2}$
$\left(k_{o} T_{1}+\frac{1}{2} k_{1} T_{1}^{2}\right)=C_{1} \times(0)+C_{2}=C_{2}$
And $\left(k_{o} T_{2}+\frac{1}{2} k_{1} T_{2}^{2}\right)=C_{1} L+C_{2}$
Then $C_{2} \neq\left(k_{o} T_{1}+\frac{1}{2} k_{1} T_{1}^{2}\right) \quad$ And
$C_{1}=\frac{\left(k_{o}\left(T_{2}-T_{1}\right)+\frac{1}{2} k_{1}\left(T_{2}^{2}-T_{1}^{2}\right)\right)}{L}$
Finally the T.D.E
- By rearranging the T.D.E

$$
k_{1} T^{2}+2 k_{o} T-2\left(C_{1} x+C_{2}\right)=0
$$

By using Rule equation we get that

- $T=\frac{-2 k_{o} \pm \sqrt{\left(2 k_{o}\right)^{2}+8 k_{1}\left(C_{1} x+C_{2}\right)}}{2 k_{1}}$
- Example 2. wall of thickness 0.4 m its temperatures of the two side of the wall are $100^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. Thermal conductivity of wall material is $(2+0.05 \mathrm{~T})$. Find the T.D.E. and heat transfer through the wall.
- Solution: heat conduction through the wall 11
- Given data: wall thickness $\Delta x=L=0.4 \mathrm{~m}$ and thermal conductivity $\mathrm{k}=k_{o}+k_{1} T$
- $k=2+0.05 T$. The boundary conditions are
- At $x=0 \mathrm{~m} \quad \mathrm{~T}=\mathrm{T}_{1}=100^{\circ} \mathrm{C}$,
- At $\mathrm{x}=0.4 \mathrm{~m} \quad T=T_{2}=20^{\circ} \mathrm{C}$
- The differential equation is
$\frac{d}{d x}\left(\left(k_{o}+k_{1} T\right) \frac{d T}{d x}\right)=\frac{d}{d x}\left((2+0.05 T) \frac{d T}{d x}\right)=0$
- By integration we get $(2+0.05 T) \frac{d T}{d x}=C_{1}$
$120.05 T) d T=C_{1} d x$
- And second integration
- $2 T+\frac{0.05}{2} T^{2}=C_{1} x+C_{2}$
- $C_{2}=\left(2 \times 100+\frac{0.05}{2}(100)^{2}\right)=450$
- $C_{1}=\frac{\left(2(20-100)+\frac{1}{2} 0.05\left(20^{2}-100^{2}\right)\right)}{0.4}=1000$
- $T=\frac{-2 k_{o} \pm \sqrt{\left(2 k_{o}\right)^{2}+8 k_{1}\left(C_{1} x+C_{2}\right)}}{2 k_{1}}$
$T \neq \frac{-2 \times 2 \pm \sqrt{(2 \times 2)^{2}+8(0.05)(-1000 x+450)}}{2(0.05)}$

X	T
0	100
0.05	92.66
0.1	84.90
0.15	76.62
0.2	67.70
0.25	57.98
0.3	47.18
0.35	34.83
0.4	20

$T=\frac{-4+\sqrt{16+(180-400 x)}}{0.1}$
Now to find the heat transfer by conduction Through this wall

- $\mathrm{Q}=-\mathrm{Ak} \frac{d T}{d x} \rightarrow q=-\left(k_{o}+k_{1} T\right) \frac{d T}{d x}$
- By separation of variables
- $\int_{1}^{2} q d x=-\int_{1}^{2}\left(k_{o}+k_{1}\right) d T$
- $q\left(x_{2}-x_{1}\right)=-\left(k_{o} T-k_{1} \frac{T^{2}}{2}\right)_{1}^{2}$
- $q=-\frac{k_{o}\left(T_{2}-T_{1}\right)+\frac{k_{1}}{2}\left(T_{2}^{2}-T_{1}^{2}\right)}{\Delta x}$
$q=-\left(k_{o}+\frac{k_{1}}{2}\left(T_{1}+T_{2}\right)\right) \frac{T_{2}-T_{1}}{L}$
$=\left(2+\frac{0.05}{2}(100+20)\right) \frac{100-20}{0.4}=5 \frac{100-20}{0.4}=1000 \mathrm{~W} / \mathrm{m}^{2}$

Plane wall conduction with heat generation

- The wall with heat generation or heat source at steady state, its differential equation of temperature distribution is:
- $\frac{d}{d x x}\left(k \frac{d T}{d x}\right)+\ddot{g}=0 \quad$ where \ddot{g} is heat generation per unit volume (some times is denoted \ddot{q}
- Where the thermal conductivity is constant
- k= constant, then
- $\frac{d^{2} T}{d x^{2}}=-\frac{\ddot{q}}{k}$
solution this equation is by integration, and that 15 ired two boundary condition depending on the proislem.
1- wall is of constant thermal conductivity k and heat generation(source) \ddot{g}, its thickness L and one surface is at T_{o} and the other surface at T_{L}. It is wonted to find the temperature distribution through this wall.
The differential equation used is $\frac{d^{2} T}{d x^{2}}=-\frac{\ddot{g}}{k}$
Boundary conditions are
At $\mathrm{x}=0 \quad T=T_{o}$ and at $\mathrm{x}=\mathrm{L} \quad T=T_{o}$

$$
\frac{d^{2} x}{d x^{2}}=-\frac{\ddot{g}}{k}
$$

- By first integrating
- $\frac{d T}{d x}=-\frac{\ddot{g} x}{k}+C_{1}$

- Second integration gives
- $T=-\frac{\mathscr{g} x^{2}}{2 k}+C_{1} x+C_{2}$

T.D.E

- Where C_{1} and C_{2} are integration constants
- From B.C. 1 where $\mathrm{x}=0 \quad T=T_{o}$

$$
T_{o}=-\frac{\ddot{g}(0)^{2}}{2 k}+C_{1}(0)+C_{2} \rightarrow C_{2}=T_{o}
$$

- From B.C. 2 where $\mathrm{x}=\mathrm{L} T=T_{L}$

17

- $T_{L}=-\frac{\ddot{g} L^{2}}{2 k}+C_{1} L+T_{o}$

Then $C_{1}=\frac{1}{L}\left(T_{L}-T_{o}\right)+\frac{\ddot{g} L}{2 k}$
The T.D.E which is $T=-\frac{\ddot{g} x^{2}}{2 k}+C_{1} x+C_{2}$
$T=-\frac{\ddot{o} x^{2}}{2 k}+\left[\frac{1}{L}\left(T_{L}-T_{o}\right)+\frac{\ddot{g} L}{2 k}\right] x+T_{o}$
$\boldsymbol{T} \neq \frac{\ddot{g} x}{2 k}(\boldsymbol{L}-\boldsymbol{x})+\left(\boldsymbol{T}_{L}-\boldsymbol{T}_{o}\right) \frac{x}{L}+\boldsymbol{T}_{\boldsymbol{o}}$
To prove that this equation is write substituting the x yalues at boundary locations, it gives the same qalues of temperatures as in B.Cs

- To find the heat flux at each surface we will use the following: $q=-k \frac{d T}{d x}$
- $\dot{q}_{0}=\left(-k \frac{d T}{d x}\right)_{x=0}=-k \frac{d}{d x}\left(\frac{\ddot{g} x}{2 k}(L-x)+\left(T_{L}-T_{o}\right) \frac{x}{L}+T_{o}\right)=-$
$\mathrm{k}\left(\frac{\dot{q}}{2 k}(L-2 x)+\left(T_{L}-T_{o}\right) \frac{1}{L}\right)_{x=0}=-\left(\frac{\ddot{g} L}{2}+\frac{k\left(T_{L}-T_{o}\right)}{L}\right)$
- $\dot{q}_{L}=\left(-k \frac{d T}{d x}\right)_{x=L}=-k\left(\frac{-\ddot{g} L}{2 k}+\frac{T_{L}-T_{o}}{L}\right)_{L}=\frac{\ddot{g} L}{2}-\frac{k\left(T_{L}-T_{o}\right)}{L}$
- We find the total heat transfer is equal to heat generation

$$
\left|g \ddot{L}=\left|\dot{q}_{0}\right|+\left|\dot{q}_{L}\right|=\left(\frac{\ddot{g} L}{2}+\frac{k\left(T_{L}-T_{0}\right)}{L}\right)+\left(\frac{\ddot{g} L}{2}-\frac{k\left(T_{L}-T_{o}\right)}{L}\right)=\frac{\ddot{g} L}{2}+\frac{\ddot{g} L}{2}=\ddot{g} L\right.
$$

- To find the location and magnitude of the maximum temperature in the wall, we will derive the T.D.E by x and equal it to zero:
- $T=\frac{\ddot{g}}{2 k}\left(L x-x^{2}\right)+\left(T_{L}-T_{o}\right) \frac{x}{L}+T_{o}$
- $\frac{d T}{d x}=\frac{\ddot{g}}{2 k}(L-2 x)+\left(T_{L}-T_{o}\right) \frac{1}{L}=0$
- $2 x-L=\frac{2 k}{\dot{g} L}\left(T_{L}-T_{o}\right)$
$x=\frac{L}{2}+\frac{k}{\ddot{g} L}\left(T_{L}-T_{o}\right)$
By substituting this T.D.E we will find the maximum temperature.
- Example: A plane wall of thickness 30 cm and its $20^{\text {ng }}$ terial is of thermal conductivity $12 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ the heat generation in the wall is $3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$. The wall surfaces temperatures are $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. Find the temperature distribution equation (T.D.E), location of maximum temperature and its value. The heat transfer from each surface per unit area.
- Solution: pane wall $\mathrm{L}=30 \mathrm{~cm}, \quad \mathrm{k}=12 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$, $\ddot{g}=3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$ the temperatures are $T_{o}=20^{\circ} \mathrm{C}$, $T_{L}=40^{\circ} \mathrm{C}$.
- Properties: The properties are constant.

Assumption: the condition is steady one-dimension with heat generation.

- Analysis: The differential equation for plane wall with 21 at generation and steady state is
- $\frac{d^{2} T}{d x^{2}}=-\frac{\ddot{g}}{k}$ and
- B.C. $1 \mathrm{x}=0 \quad T=T_{o}, B . C .2 \quad x=L \quad T=T_{l}$
- $T=\frac{\ddot{g}}{2 k}\left(L x-x^{2}\right)+\left(T_{L}-T_{o}\right) \frac{x}{L}+T_{o}$
- $T=\frac{3 \times 10^{4}}{2 \times 12}\left(0.3 x-x^{2}\right)+(40-20) \frac{x}{0.3}+20$
- $T=1250\left(0.3 x-x^{2}\right)+\frac{20 x}{0.3}+20$
- This is the T.D.E

X m	T C
0	20
0.05	38.958
0.10	51.667
0.15	58.125
0.1767	59.028
0.20	58.333
0.25	52.291
0.3	40

- To the location of the maximum temperature

$$
23 \quad T=1250\left(0.3 x-x^{2}\right)+\frac{20 x}{0.3}+20
$$

- $\frac{d T}{d x}=1250(0.3-2 x)+\frac{20}{0.3}=0$
- $2 x=0.3+\frac{20}{0.3 \times 1250}=0.3533$
- $x=\frac{0.3533}{2}=0.1767 \mathrm{~m}=17.67 \mathrm{~cm}$
- $T_{\max }=1250\left(0.3 \times 0.1767-(0.1767)^{2}\right)+\frac{20(0.1767)}{0.3}+20$ $=59.028^{\circ} \mathrm{C}$
- Now to find heat flux at $x=0 \mathrm{~m}$ and $\mathrm{x}=0.3 \mathrm{~m}$

$$
\begin{aligned}
q_{o}= & \left(-k \frac{d T}{d x}\right)_{x=0}=-12\left[\frac{d T}{d x}=1250(0.3-2 \times 0)+\frac{20}{0.3}\right] \\
24 & =-5300 \mathrm{~W} / m^{2}
\end{aligned}
$$

- $q_{L}=\left(-k \frac{d T}{d x}\right)_{x=L}=-12\left[\frac{d T}{d x}=1250(0.3-2 \times 0.3)+\frac{20}{0.3}\right]$
$=3700 \mathrm{~W} / \mathrm{m}^{2}$
- We can see that heat generation is equal to the heatflow from the two surfaces
- That $\ddot{g}=\frac{q_{L}+q_{0}}{L}=\frac{3700+5300}{0.3}=\frac{30000 \mathrm{~W}}{m^{3}}=3 \times \frac{10^{4} \mathrm{~W}}{\mathrm{~m}^{3}}$

2- Heat generation in a wall of the same surface temperature

- Let us take a wall of thickness 2 L and thermal conductivity k. The heat generation in the wall is $\ddot{g} W / m^{3}$. The temperatures of the two sides are T_{w}. Find T.D.E
- The Differential equation is $\frac{d^{2} T}{d x^{2}}=-\frac{\ddot{g}}{k}$
- The boundary conditions are

$$
\begin{aligned}
& x= \pm L \quad T=T_{w}, \quad x=0 \quad \frac{d T}{d x}=0 \\
& T_{\max }=T_{o} \quad \text { at } x=0
\end{aligned}
$$

$26 \frac{d^{2} T}{d x^{2}}=-\frac{\ddot{g}}{k}$
by integration

- $\frac{d T}{d x}=-\frac{\ddot{g} x}{k}+C_{1}$
- From B.C. 2 where $\frac{d T}{d x}=0$ at $x=0$
- $0=0+C_{1} \rightarrow C_{1}=0$
- The differential equation becomes
- $\frac{d T}{d x}=-\frac{\ddot{g} x}{k}$ and by integrating this equation we get

$$
T=-\frac{\ddot{g} x^{2}}{2 k}+C_{2} \quad \text { B.C. } 1 x= \pm L \quad T=T_{w}
$$

- $T_{w}=-\frac{\ddot{g} L^{2}}{2 k}+C_{2} \rightarrow C_{2}=\frac{\ddot{g} L^{2}}{2 k}+T_{w}$
- The T.D.E is $\quad T=-\frac{\ddot{g} x^{2}}{2 k}+\frac{\ddot{L} L^{2}}{2 k}+T_{w}$
- OR $\quad T-T_{w}=\frac{\ddot{g} L^{2}}{2 k}\left(1-\left(\frac{x}{L}\right)^{2}\right)$
- At the mid-line where $\mathrm{x}=0, T=T_{o}$
- $T_{o}-T_{w}=\frac{\ddot{\partial} L^{2}}{2 k}$

By dividing eq.(1) by eq.(2), we get that

$$
\begin{equation*}
\frac{T-T_{w}}{T_{o}-T_{w}}=\left(1-\frac{x^{2}}{L^{2}}\right) \tag{3}
\end{equation*}
$$

Conduction Equation for Cylindrical wall

- Heat conduction equation for cylindrical wall with no heat generation becomes
- $\frac{d}{d r}\left(k r \frac{d T}{d r}\right)=0$

- And for k=constant, it becomes
$\frac{d}{d r}\left(r \frac{d T}{d r}\right)=0$
- If we take long cylinder with inner radius of r_{i} with temperature at that surface is T_{i}, and outer radius of r_{o} with temperature T_{o}. To find the T.D.E through this cylindrical wall, we take the eq.(2)

$$
\begin{aligned}
& \frac{d}{d r}\left(r \frac{d T}{d r}\right)=0 \text { and the boundary conditions are: } \\
& \text { B.C. } 1 \quad \text { at } r=r_{i} \quad T=T_{i} \\
& \text { B.C. } 2 \text { at } r=r_{o} \quad T=T_{o}
\end{aligned}
$$

- By integrating the differential equation we get
- $r \frac{d T}{d r}=C_{1} \rightarrow \frac{d T}{d r}=\frac{C_{1}}{r}$
- By second integrating it becomes
- $T=C_{1} \ln r+C_{2}$
- By substituting the B.Cs, we get
- $T_{i}=C_{1} \ln r_{i}+C_{2}$ and $T_{o}=C_{1} \ln r_{o}+C_{2}$
- By subtracting the first equation from the second, 30 we get that:
- $T_{o}-T_{i}=C_{1} \ln \frac{r_{o}}{r_{i}} \rightarrow C_{1}=\frac{T_{o}-T_{i}}{\ln \frac{r_{o}}{r_{i}}}$
- By substituting in one of the upper relation we get
- $T_{i}=\frac{T_{o}-T_{i}}{\ln \frac{r_{o}}{r_{i}}} \ln r_{i}+C_{2}$
- $C_{2}=r_{i}-\frac{T_{o}-T_{i}}{\ln \frac{r_{o}}{r_{i}}} \ln r_{i}$
- By substituting the values of C_{1} and C_{2} in the T.D.E

$$
T=C_{1} \ln r+C_{2}
$$

- $T=C_{1} \ln r+C_{2}$
- $T=\frac{T_{o}-T_{i}}{\ln \frac{r_{o}}{r_{i}}} \ln r+T_{i}-\frac{T_{o}-T_{i}}{\ln \frac{r_{o}}{r_{i}}} \ln r_{i}$
$-T-T_{i}=\frac{T_{o}-T_{i}}{\ln \frac{r_{0}}{r_{i}}}\left(\ln r-\ln r_{i}\right)=\frac{T_{o}-T_{i}}{\ln \frac{r_{0}}{r_{i}}} \ln \frac{r}{r_{i}}$
$\frac{T-T / i}{T_{o}-T_{i}}=\frac{\ln \frac{r}{r_{i}}}{\ln \frac{r_{o}}{r_{i}}}$
T.D.E through cylindrical wall with no
heat generation.
- Example: Find the temperature at the mid-point of pipe with inner diameter of 20 cm and outer diameter of 50 cm . The temperature at inner surface is $125^{\circ} \mathrm{C}$ and at outer surface is $25^{\circ} \mathrm{C}$. If the thermal conductivity of pipe material is $10 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$, Find the heat transfer from the tube surface per 10 m long.
- Solution: Pipe with no heat generation. Its specifications are
$=20 \mathrm{~cm}=0.2 \mathrm{~m}, r_{i}=0.1 \mathrm{~m} \& T_{i}=125^{\circ} \mathrm{C}$,
$D_{o}=50 \mathrm{~cm}=0.5 \mathrm{~m}, \quad r_{o}=0.25 \mathrm{~m} \quad \& \quad T_{o}=25^{\circ} \mathrm{C}, k$
$=10 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ pipe length $\mathrm{r}=10 \mathrm{~m}$
- It is needed to find the temperature at the mid-

33 point of the wall, and the heat transfer from the pipe if its length is 10 m .

- At the mid-point the radius become
- $r_{m}=\frac{r_{i}+r_{O}}{2}=\frac{0.1+0.25}{2}=0.175 \mathrm{~m}$
- Or $r_{m}=r_{i}+\frac{\Delta r}{2}=0.1+\frac{0.25-0.1}{2}=0.1+0.075=0.175 \mathrm{~m}$
- By using T.D.E for cylindrical wall
$-\frac{T-T_{i}}{T_{o}-T_{i}}=\frac{\ln \frac{r}{r_{i}}}{\ln \frac{r_{0}}{r_{i}}} \rightarrow \frac{T-125}{25-125}=\frac{\ln \frac{0.175}{0.10}}{\ln \frac{0.25}{0.10}}=0.61$

$$
=125-(100 \times 0.61)=63.9^{\circ} \mathrm{C}
$$

$Q=\frac{T_{i}-T_{o}}{\frac{1}{2 \pi L k} \ln \frac{r_{O}}{r_{i}}}=\frac{1 \dot{2} 5-25}{\frac{1}{2 \pi \times 10 \times 10} l n \frac{0.25}{0.1}}=68572 \mathrm{~W}=68.572 \mathrm{~kW}$

Conduction In cylindrical wall with heat generation

The differential equation of temperature distribution through cylindrical wall with heat generation is
$\frac{1}{r} \frac{d}{d r}\left(r k \frac{d T}{d r}\right)+\ddot{g}=0$
Før k=constant. Equation becomes
$\frac{d}{d r}\left(r \frac{d T}{d r}\right)=-\frac{\ddot{g} r}{k}$

- Solid cylindrical pipe of radius R with heat

35 generation per unit volume $\ddot{g} W / m^{3}$ and constant thermal conductivity $\mathrm{k} \mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

- Boundary conditions are
- B.C. 1

$$
\frac{d T}{d r}=0 \quad \text { at } \quad r=0
$$

- B.C. $2 \quad T=T_{R} \quad$ at $\quad r=R$
- The integrating $\frac{d}{d r}\left(r \frac{d T}{d r}\right)=-\frac{\ddot{g} r}{k}$
- $r \frac{d r}{d r}=-\frac{\ddot{g} r^{2}}{2 k}+C_{1} \rightarrow \frac{d T}{d r}=-\frac{\ddot{g} r}{2 k}+\frac{C_{1}}{r}$

By applying B.C. $1 \quad C_{1}=0$

Then the equation becomes

- $\frac{d T}{d r}=-\frac{\ddot{g} r}{2 k}$
- By the second integration we get that
- $T=-\frac{\ddot{g} r^{2}}{4 k}+C_{2} \quad$ T.D.E
- from B.C. $2 \mathrm{r}=\mathrm{R} \quad \mathrm{T}=T_{R}$
$T_{R}=-\frac{\ddot{g} R^{2}}{4 k}+C_{2} \rightarrow C_{2}=\frac{\ddot{g} R^{2}}{4 k}+T_{R}$
$T=-\frac{\ddot{g} r^{2}}{4 k}+C_{2}=-\frac{\ddot{g} r^{2}}{4 k}+\frac{\ddot{g} R^{2}}{4 k}+T_{R}$
$T=\frac{\ddot{g} R^{2}}{4 k}\left(1-\left(\frac{r}{R}\right)^{2}\right)+T_{R}$
$T-T_{R}=\frac{\ddot{g} R^{2}}{4 k}\left(1-\left(\frac{r}{R}\right)^{2}\right)$
- It is T.D.E in cylindrical wall with heat source
- At the center of cylinder where $r=0 \quad T=T_{o}$
- $T_{o}-T_{R}=\frac{\ddot{g} R^{2}}{4 k}\left(1-\left(\frac{0}{R}\right)^{2}\right)$
- $T_{o}-\mathscr{T}_{R}=\frac{\ddot{g} R^{2}}{4 k}$
- By/dividing eq.(1) by eq.(2) we get

$$
\frac{p-T_{R}}{r_{o}-T_{R}}=\left[1-\left(\frac{r}{R}\right)^{2}\right] \text { it is also T.D.E }
$$

- To calculate heat transfer from the surface of the cylinder per length.
- $\dot{q}_{R}=-k \frac{d T}{d r}=-k\left(-\frac{\ddot{g} r}{2 k}\right)_{r=R}=\frac{\ddot{g} R}{2}$
- $\dot{Q}_{R}=2 \pi L R \frac{\ddot{g} R}{2}=\pi L R^{2} \ddot{g}$
- Example: Solid pipe of diameter 20 cm and its outer surface temperature is $25^{\circ} \mathrm{C}$. The thermal conductivity of its material is $20 \mathrm{~W} / \mathrm{m}^{.}{ }^{\circ} \mathrm{C}$. The heat generation is $10^{5} \mathrm{~W} / \mathrm{m}^{3}$. Find the temperature at the center, and heat transfer from the cylinder outside surface.
- Solution: Solid pipe with heat cylinder.
- $D=20 \mathrm{~cm}, R=10 \mathrm{~cm}=0.1 \mathrm{~m}$, the heat generation $\dot{\phi}=10^{5} \mathrm{~W} / \mathrm{m}^{3}, T_{R}=25^{\circ} \mathrm{C}$ Properties: Constant thermal conductivity $\mathrm{k}=20 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$.
- Assumption: Steady state heat conduction

40

- Analysis: the temperature at the center of the cylinder.
- $T_{o}-T_{R}=\frac{\ddot{g} R^{2}}{4 k}$
- $T_{o}=\frac{10^{5}(0.1)^{2}}{4(20)}+25=37.5^{\circ} \mathrm{C}$
- The heat transfer from the surface
- $\dot{Q}_{R}=\pi L R^{2} \ddot{g}$
$\dot{Q}_{R}=\pi \times 1 \times(0.1)^{2} \times 10^{5}=1000 \pi W$

Heat generation in hollow cylinder

- A hollow cylinder of inner radius r_{i} and outer radius r_{0}. The temperature at inner surface is T_{i} and at outer surface is T_{0}. Thermal conductivity of the pipe material is k, and the heat generation per volume \ddot{g}.
- The/differential equation is
- $\frac{d}{d r}\left(r \frac{d T}{d r}\right)=-\frac{\ddot{g} r}{k}$
- The boundary conditions are

$$
\text { At } r=r_{i} \quad T=T_{i}
$$

$$
\text { at } r=r_{o} \quad T=T_{o}
$$

- By integrating differential equation first integrating 42

$$
\frac{d T}{d r}=-\frac{\ddot{\partial} r}{2 k}+\frac{C_{1}}{r}
$$

- By second integrating
- $\boldsymbol{T}=-\frac{\ddot{g} r^{2}}{4 k}+C_{1} \ln r+C_{2} \quad$ (T.D.E)
- From B.C $1 \quad T_{i}=-\frac{\ddot{g} r_{i}^{2}}{4 k}+C_{1} \ln r_{i}+C_{2}$
- Anda B.C $2 \quad T_{o}=-\frac{\ddot{g} r_{o}^{2}}{4 k}+C_{1} \ln r_{o}+C_{2}$
- By subtracting eq.(2) from eq.(1) we get 43
- $\quad T_{i}-T_{o}=-\frac{\ddot{g} r_{i}^{2}}{4 k}+\frac{\ddot{g} r_{o}^{2}}{4 k}+C_{1} \ln r_{i}-C_{1} \ln r_{o}$
- $T_{i}-T_{o}=\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-C_{1} \ln \frac{r_{o}}{r_{i}}$
- From this we get that
- $C_{1}=\frac{\frac{\ddot{\theta}}{l k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)}{\ln \frac{r_{O}}{r_{i}}}$
- By substituting value of C_{1} in eq.(1) we get:
$T_{i}=-\frac{\dot{g} r_{i}^{2}}{4 k}+\frac{\frac{g}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)}{\ln \frac{r_{O}}{r_{i}}} \ln r_{i}+C_{2}$
- $C_{2}=\frac{\ddot{g} r_{i}^{2}}{4 k}-\frac{\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)}{\ln \frac{r_{0}}{r_{i}}} \ln r_{i}+T_{i}$
- After we find C_{1} and C_{2}, substitute them in equation of T.D.E
- $T=-\frac{\ddot{g} r^{2}}{4 k}+C_{1} \ln r+C_{2}$
$=-\frac{\ddot{g} r^{2}}{4 k}+\frac{\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)}{\ln \frac{r_{o}}{r_{i}}} \ln r+\frac{\ddot{g} r_{i}^{2}}{4 k}-\frac{\frac{\dot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)}{\ln \frac{r_{o}}{r_{i}}} \ln r_{i}$ $+T_{i}$
- $T=-\frac{\ddot{g}}{4 k}\left(r^{2}-r_{i}^{2}\right)+\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{\ln \frac{r}{r_{i}}}{\ln \frac{r_{o}}{r_{i}}}+T_{i}$ final form of T.D.E
- To find the location and magnitude of maximum temperature:
$\frac{d T}{d r}=-\frac{\ddot{g} r}{2 k}+\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{r_{i / r}}{r_{i} l n \frac{r_{O}}{r_{i}}}=0$

$$
=\left\{\frac{2 k}{\ddot{g}}\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{\ln \frac{r_{0}}{r_{i}}}\right\}^{1 / 2}
$$

By substituting in T.D.E we can find the max. temp.

- Example: Cylindrical pipe of inner radius 20 cm and outer radius 50 cm . The temperature of inner surface is $50^{\circ} \mathrm{C}$ and of outer surface is $10^{\circ} \mathrm{C}$. Thermal conductivity of the pipe material is $10 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$. The heat generation in the pipe wall is $4 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$. Find the equation of temperature distribution through the wall of the pipe and find the temperature at the mid-point of the wall. The location and magnitude of the maximum temperature and also the heat flux at inner and outer surface.
- Solution: Hollow pipe $r_{i}=20 \mathrm{~cm}=0.2 \mathrm{~m}$,

$$
47 t_{o}=50 \mathrm{~cm}=0.5 \mathrm{~m},
$$

- the thermal conductivity $\mathrm{k}=10 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$.
- The heat generation is $\ddot{g}=4 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$.
- B.C. 1 At $r=r_{i}=0.2 m \quad T_{i}=50^{\circ} \mathrm{C}$, and
- B.C. 2 at $r=r_{o}=0.5 m \quad T_{o}=10^{\circ} \mathrm{C}$.
- Assumption: The thermal conductivity is constant and heat generation is also constant
- Analysis: the differential equation for temperature in cylindrical wall with heat generation is

$$
\frac{d}{d r}\left(r \frac{d T}{d r}\right)=-\frac{\ddot{g} r}{k}
$$

By double integration for this equation and Substituting the boundary condition:

- $r_{i}=0.2 m T_{i}=50^{\circ} \mathrm{C}, \quad r_{o}=0.5 m \quad T_{o}=10^{\circ} \mathrm{C}$
$48=-\frac{\ddot{g}}{4 k}\left(r^{2}-r_{i}^{2}\right)+\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{\ln \frac{r}{r_{i}}}{\ln \frac{r_{o}}{r_{i}}}+T_{i}$
- $\mathrm{T}=-\frac{4 \times 10^{4}}{4 \times 10}\left(r^{2}-(0.2)^{2}\right)$
$+\left[\frac{4 \times 10^{4}}{4 \times 10}\left(0.5^{2}-0.2^{2}\right)-(50-10)\right] \frac{\ln \frac{r}{0.2}}{\ln \frac{.5}{0.2}}+50$

$$
T=-1000\left(r^{2}-(0.2)^{2}\right)+185.53 \ln \frac{r}{0.2}+50
$$

- To find the temperature at mid-point of the wall $r_{\text {m }}=\frac{r_{i}+r_{o}}{2}=\frac{0.2+0.5}{2}=0.35 \mathrm{~m}$

$$
T=-1000\left(r^{2}-(0.2)^{2}\right)+185.53 \ln \frac{r}{0.2}+50
$$

- $T_{m}=-1000\left((0.35)^{2}-(0.2)^{2}\right)+185.53 \ln \frac{0.35}{0.2}+50=71.33^{\circ} \mathrm{C}$
- To find the location of maximum temperature
- $r=\left\{\frac{2 k}{\ddot{g}}\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{\ln \frac{r_{0}}{r_{i}}}\right\}^{1 / 2}$
- $r=\left\{\frac{2 \times 10}{4 \times 10^{4}}\left[\frac{4 \times 10^{4}}{4 k}\left(0.5^{2}-0.2^{2}\right)-(50-10)\right] \frac{1}{\ln \frac{0.5}{0.5}}\right\}^{1 / 2}$
- $r=0.3045 \mathrm{~m}$
$r_{\max }=-1000\left((0.3045)^{2}-0.2^{2}\right)+185.53 \ln \frac{0.3045}{0.2}+50$
$=80.71^{\circ} \mathrm{C}$
- To find the heat flux at the inner surface and outer surface, we use:
- $\left.q_{r=r_{i}}=-k \frac{d T}{d r}\right)_{r=r_{i}}$
- $q_{r=r_{i}} \neq-k\left\{-\frac{\ddot{g}}{4 k}(2 r)+\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r \ln \left(\frac{r_{O}}{r_{i}}\right)}\right\}$
$-q_{r=}=-k\left\{-\frac{\ddot{g}}{4 k}\left(2 r_{i}\right)+\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r_{i} \ln \left(\frac{r_{o}}{r_{i}}\right)}\right\}$
- $q_{r=r_{i}}$

$$
=-10\left\{-\frac{4 \times 10^{4}}{4 \times 10}(2 \times 0.2)+\left[\frac{4 \times 10^{4}}{4 \times 10}\left(0.5^{2}-0.2^{2}\right)-(50-10)\right] \frac{1}{0.2 \ln \left(\frac{0.5}{0.2}\right)}\right\}
$$

$$
=-1281.37 \mathrm{~W}
$$

- $q_{r=r_{o}}=-k\left\{-\frac{\ddot{g}}{4 k}\left(2 r_{o}\right)+\left[\frac{\ddot{g}}{4 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r_{o} \ln \left(\frac{r_{o}}{r_{i}}\right)}\right\}$
- $q_{r=r_{0}}$
$=-10\left\{-\frac{4 \times 10^{4}}{4 \times 10}(2 \times 0.5)+\left[\frac{4 \times 10^{4}}{4 \times 10}\left(0.5^{2}-0.2^{2}\right)-(50-10)\right] \frac{1}{0.5 \ln \left(\frac{0.5}{0.2}\right)}\right\}$
$=8943.73 \mathrm{~W}$

Heat Conduction in Spherical Body

- Hollow Spherical body without heat generation
- $\frac{d}{d r}\left(k r^{2} \frac{d T}{d r}\right)=0 \quad$ If $\mathrm{k}=$ constant then
- $\frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=0$
- The Boundary conditions are
B.C. 1 At $r=r_{i} \quad T=T_{i}$
B.C. 2 At $\mathrm{r}=r_{o} \quad \mathrm{~T}=T_{o}$

- The differential equation $\frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=0$
- It can be integrated first integration
- $r^{2} \frac{d T}{d r}=C_{1} \quad$ or $\quad \frac{d T}{d r}=C_{1} r^{-2}$
- By second integrating in becomes
- $T=-C_{1} r^{-1}+C_{2}$ or $T=\frac{C_{1}}{r}+C_{2} \quad$ T.D.E
- By substituting the boundary conditions

From B.C. $1 T_{i}=\frac{C_{1}}{r_{i}}+C_{2}$
from B.C. $2 T_{o}=\frac{C_{1}}{r_{o}}+C_{2}$
(2)

B (substituting eq.(2) from eq.(1)
$T_{i}-T_{o}=\frac{C_{1}}{r_{i}}-\frac{C_{1}}{r_{o}}=C_{1}\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)$
$C_{1}=\frac{\left(T_{i}-T_{o}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)}$ by substituting this in eq.(1) we get
$T_{i}=\frac{\left(T_{i}-T_{o}\right)}{\left(\frac{1}{y_{i}}-\frac{1}{r_{o}}\right)} \frac{1}{r_{i}}+C_{2} \quad$ then
$C_{2} \neq T_{i}-\frac{\left(T_{i}-T_{o}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)} \frac{1}{r_{i}}$
By substituting $C_{1} \& C_{2}$ in T.D.E we get

55

- $T=\frac{\left(T_{i}-T_{o}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)} \frac{1}{r}+T_{i}-\frac{\left(T_{i}-T_{o}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)} \frac{1}{r_{i}}$
or
- $T-T_{i}=\left(T_{i}-T_{o}\right) \frac{\left(\frac{1}{r}-\frac{1}{r_{i}}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)}$
$\frac{\left(T-T_{i}\right)}{\left(T_{0}-T_{i}\right)}=\frac{\left(\frac{1}{r_{i}}-\frac{1}{r}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)}$
T.D.E
- Example: hollow spherical wall of inside radius 0.3 m and outside radius is 0.7 m . Thermal conductivity of its material is $12 \mathrm{~W} / \mathrm{m} .{ }^{0} \mathrm{C}$. The temperature of inner surface is $300^{\circ} \mathrm{C}$ and temperature of outer surface is $50^{\circ} \mathrm{C}$. Find the T.D. E. and find the temperature magnitude at $1 / 4,1 / 2$ and $3 / 4$ of the thickness of the shell. Determine also the heat transfer form the spherical shell.
- Solution: spherical shell of $r_{i}=0.3 \mathrm{~m}$ and r_{o} $=0.7 \mathrm{~m}$ with $T_{i}=300^{\circ} \mathrm{C}$ and $T_{o}=50^{\circ} \mathrm{C}$ and $\mathrm{k}=12 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$.
Assumption: one-dimensional heat conduction with constant thermal conductivity.
- Analysis: the differential equation is $\frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=0$ 57
- The solution of this equation
$\frac{\left(T-T_{i}\right)}{\left(T_{o}-T_{i}\right)}=\frac{\left(\frac{1}{r_{i}}-\frac{1}{r}\right)}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)}$
$-\frac{(T-300)}{(50-300)}=\frac{\left(\frac{1}{0.3}-\frac{1}{r}\right)}{\left(\frac{1}{0.3}-\frac{1}{0.7}\right)} \rightarrow \frac{(T-300)}{(-250)}=\frac{\left(\frac{1}{0.3}-\frac{1}{r}\right)}{(1.90476)}$
- At $/ / 4$ of the shell $r=0.4 \mathrm{~m} \quad T=190.62^{\circ} \mathrm{C}$
- A $+1 / 2$ of the shell $r=0.5 \mathrm{~m} \quad T=125^{\circ} \mathrm{C}$

At $3 / 4$ of the shell $r=0.6 \mathrm{~m} \quad T=81.25^{\circ} \mathrm{C}$

- To find the heat transfer from the spherical shell 58

$$
Q=\frac{\left(T_{i}-T_{o}\right)}{\frac{1}{4 \pi k}\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)}=\frac{(300-50)}{\frac{1}{4 \pi \times 12}\left(\frac{1}{0.3}-\frac{1}{0.7}\right)}=19792 \mathrm{~W}
$$

Chart Title

T	r
300	0.3
190.62	0.4
125	0.5
81.25	0.6
	50

Heat conduction in solid Sphere with heat generation

- Solid sphere with outer radius R and constant thermal conductivity k. The heat generation in the sphere is $\ddot{g} W / m^{3}$. To find the temperature distribution through the solid sphere. The Boundary conditions are
At $\mathrm{r}=0 \frac{d T}{d r}=0$, at $\mathrm{r}=\mathrm{R} T=T_{o}$.
- The differential equation of temperature distribution is
- $\frac{d}{d 0}\left(r^{2} \frac{d T}{d r}\right)=-\frac{\ddot{g} r^{2}}{k}$

By integrating this equation we get that:

- $r^{2} \frac{d T}{d r}=-\frac{\ddot{g} r^{3}}{3 k}+C_{1}$
- From B.C. 1 where $\mathrm{r}=0 \frac{d T}{d r}=0$ then $C_{1}=0$
- $r^{2} \frac{d T}{d r}=-\frac{\ddot{g} r^{3}}{3 k} \quad \rightarrow \quad \frac{d T}{d r}=-\frac{\ddot{g} r}{3 k}$
- By integrating this equation we get that
$T=-\frac{\ddot{g} r^{2}}{6 k}+C_{2} \quad$ From B.C. 2 where $r=R \quad T=T_{R}$
$C_{2}=\frac{\ddot{g} R^{2}}{6 k}+T_{R}$

$$
T=-\frac{\ddot{g} r^{2}}{6 k}+\frac{\ddot{g} R^{2}}{6 k}+T_{R}
$$

- $T-T_{R}=\frac{\ddot{g} R^{2}}{6 k}\left(1-\left(\frac{r}{R}\right)^{2}\right)$
- The temperature at the center of the sphere is
- $T_{o}-T_{R}=\frac{\ddot{g} R^{2}}{6 k}\left(1-\left(\frac{0}{R}\right)^{2}\right)=\frac{\ddot{g} R^{2}}{6 k}$
- By dividing eq.(1) by eq.(2) we get:

$$
\frac{T-T_{R}}{\pi / o-T_{R}}=\frac{\frac{\dot{g} R^{2}}{6 k}\left(1-\left(\frac{r}{R}\right)^{2}\right)}{\frac{\partial R^{2}}{6 k}}=\left(1-\left(\frac{r}{R}\right)^{2}\right)
$$

- To find the heat flux at the outer surface of the 62 here, we do that:
- $\left.q_{R}=-k \frac{d T}{d r}\right)_{r=R}=-k \frac{d}{d r}\left(-\frac{\ddot{g} r^{2}}{6 k}+\frac{\ddot{g} R^{2}}{6 k}+T_{R}\right)$
- $q_{R}=-k\left(-\frac{2 \ddot{g} r}{6 k}\right)_{r=R}=\frac{\ddot{g} R}{3} W / m^{2}$
- $\dot{Q}_{R}=A q_{R}=4 \pi R^{2} \frac{\ddot{g} R}{3}=\frac{4}{3} \pi R^{3} \ddot{g}$

Heat Conduction in a Hollow sphere with heat generation

- Hollow sphere with inner radius r_{i} and outer radius r_{0}, thermal conductivity of its material is k and the heat generation is \ddot{g}. It is to find the temperature distribution equation.
- The differential equation is $\frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=-\frac{\ddot{g} r^{2}}{k}$
- The Boundary conditions are:
B.C. 1 at $\mathrm{r}=r_{i} \quad T=T_{i}$ B.C. $2 \quad \mathrm{r}=r_{o} \quad T=T_{o}$

By integrating the equation we get:

$$
r^{2} \frac{d T}{d r}=-\frac{\ddot{g} r^{3}}{3 k}+C_{1}
$$

- $\frac{d T}{d r}=-\frac{\ddot{g} r}{3 k}+\frac{C_{1}}{r^{2}} \quad$ and by second integration
- $T=-\frac{\ddot{g} r^{2}}{6 k}-\frac{C_{1}}{r}+C_{2}$ T.D.E.
- By applying the boundary conditions
- B.C. $T_{i}=-\frac{\ddot{g} r_{i}^{2}}{6 k}+\frac{C_{1}}{r_{i}}+C_{2}$

B/C. $2 \quad T_{o}=-\frac{\ddot{g} r_{o}^{2}}{6 k}+\frac{C_{1}}{r_{o}}+C_{2}$

- By subtracting eq.(2) from eq.(1) we get:

$$
T_{i}-T_{o}=\frac{\dot{g}}{6 k}\left(r_{o}^{2}-r_{i}^{2}\right)+C_{1}\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)
$$

- $C_{1}=\frac{1}{\left(\frac{1}{\left.r_{i}-\frac{1}{r_{o}}\right)}\right.}\left[\frac{\ddot{g}}{6 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right]$
- By substituting in eq.(1) we get:
- $T_{i}=-\frac{\dot{g} r_{i}^{2}}{6 k}+\frac{1}{\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)}\left[\frac{g}{6 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r_{i}}+C_{2}$
- $C_{2}=T_{j}+\frac{\ddot{g} r_{i}^{2}}{6 k}-\frac{1}{\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)}\left[\frac{\ddot{g}}{6 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r_{i}}$
$=-\frac{\dot{g} r^{2}}{6 k}-\frac{1}{\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)}\left[\frac{\tilde{g}}{6 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r}+T_{i}+\frac{\dot{g} r_{i}^{2}}{6 k}$
$+\frac{1}{\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)}\left[\frac{g}{6 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right] \frac{1}{r_{i}}$
$T=-\frac{\ddot{g}}{6 k}\left(r^{2}-r_{i}^{2}\right)+\frac{1}{\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right.}\left[\frac{\underline{g}}{16 k}\left(r_{o}^{2}-r_{i}^{2}\right)-\left(T_{i}-T_{o}\right)\right]\left(\frac{1}{r_{i}}-\frac{1}{r}\right)+T_{i}$

