Problem 6

Calculate the moment of inertia of the shaded area about the .x-axis

Solution

Problem 7

Determine the moments of inertia of the Z -section about its centroidal $\mathrm{X}_{0}-$ and $\mathrm{y}_{0} \cdot$ axes.

Solution

Problem 8

Determine the moment of inertia of the shaded area about the .x-axis

Solution

Problem 9

Determine the polar radius of gyration about point A for the shaded area shown

Solution

$$
\begin{aligned}
& 80 \mathrm{~mm}: \quad I_{x}=I_{y}=\frac{1}{3}(80)(80)^{3}=13.65\left(10^{6}\right) \mathrm{mm}^{4} \\
& \text { Quarter-circular area: } \\
& I_{x}=I_{y}=\frac{-1}{4}\left(\frac{1}{4} \pi[60]^{4}\right)=-2.54\left(10^{6}\right) \mathrm{mm}^{4} \\
& \text { Area } A=(80)^{2}-\frac{1}{4} \pi(60)^{2}=3573 \mathrm{~mm}^{2} \\
& I_{z}=I_{x}+I_{y}=2(13.65-2.54) 10^{6} \\
& =22.22\left(10^{6}\right) \mathrm{mm}^{4} \\
& k_{A}^{2}=I_{z} / A=22.22\left(10^{6}\right) / 3573=6219 \mathrm{~mm}^{2}, K_{A}=\sqrt{6219}=78.9 \mathrm{~mm}
\end{aligned}
$$

