Digital Signal Processing

Fourier Transform Properties

Linearity property

If $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$ then $a_1g_1(t) + a_2g_2(t) \Leftrightarrow a_1G_1(\omega) + a_2G_2(\omega)$ where a_1 and a_2 are constants

This property is proved easily by linearity property of integrals used in defining Fourier transform

Symmetry property
If $g(t) \Leftrightarrow G(\omega)$,then $G(t) \Leftrightarrow 2\pi g(-\omega)$ Proof $g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega t} d\omega$ $2\pi g(-t) = \int_{-\infty}^{\infty} G(\omega) e^{-j\omega t} d\omega$

we can interchange the variable t and ω , i.e. let $t \rightarrow \omega, \omega \rightarrow t$, then

$$2\pi g(-\omega) = \int_{-\infty}^{\infty} G(t) e^{-j\omega t} dt$$
$$\therefore G(t) \Leftrightarrow 2\pi g(-\omega)$$

Time scaling property

$$g(at) \Leftrightarrow \frac{1}{|a|} G(\frac{\omega}{a})$$

Proof

$$F[g(at)] = \int_{-\infty}^{\infty} g(at) e^{-j\omega t} dt$$

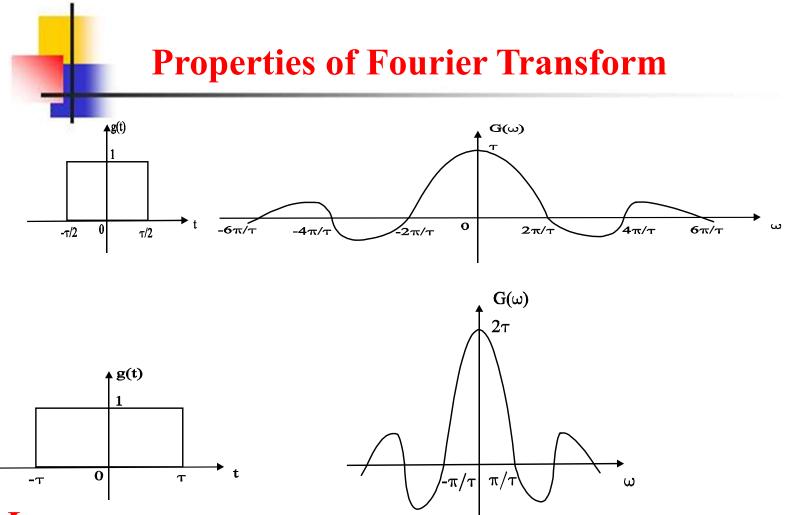
let x = at, then dt = dx/a,
case 1: when a > 0,
$$F[g(at)] = \frac{1}{a} \int_{-\infty}^{\infty} g(x) e^{-j\omega x/a} dx = \frac{1}{a} G(\frac{\omega}{a})$$

case 2: when a < 0, then t
$$\rightarrow \infty$$
 leads to x $\rightarrow -\infty$,

$$F[g(at)] = \frac{1}{a} \int_{\infty}^{-\infty} g(x) e^{-j\omega x/a} dx = -\frac{1}{a} \int_{-\infty}^{\infty} g(x) e^{-j\omega x/a} dx = -\frac{1}{a} G(\frac{\omega}{a})$$

Combined, the two cases are expressed as,

$$g(at) \Leftrightarrow \frac{1}{|a|} G(\frac{\omega}{a})$$



Important Observation:

Time domain *compression* of a signal results in spectral *expansion* Time domain *expansion* of a signal results in spectral *compression*

Time shifting property

$$g(t-t_0) \Leftrightarrow G(\omega)e^{-j\omega t_0}$$

Proof
 $F[g(t-t_0)] = \int_{0}^{\infty} g(t-t_0)e^{-j\omega t}dt$

$$F[g(t-t_0)] = \int_{-\infty}^{\infty} g(t-t_0) e^{-j\omega t} dt$$

put $t - t_0 = x$, so that dt = dx, then

$$F[g(t-t_0)] = \int_{-\infty}^{\infty} g(x)e^{-j\omega(x+t_0)}dx = e^{-j\omega t_0} \int_{-\infty}^{\infty} g(x)e^{-j\omega x}dx = G(\omega)e^{-j\omega t_0}$$

Frequency shifting property

 $g(t)e^{j\omega_0 t} \Leftrightarrow G(\omega - \omega_0)$

Proof $F[g(t)e^{j\omega_0 t}] = \int_0^\infty g(t)e^{-j\omega t}e^{j\omega_0 t}dt = \int_0^\infty g(t)e^{-j(\omega-\omega_0)t}dt = G(\omega-\omega_0)$

Significance

- Multiplication of a function g(t) by $exp(j\omega_0 t)$ is equivalent to shifting its Fourier transform in the positive direction by an amount ω_0 . -- Frequency translation theorem.
- *Translation of a spectrum* helps in achieving *modulation*, which is performed by multiplying the known signal g(t) by a sinusoidal signal.

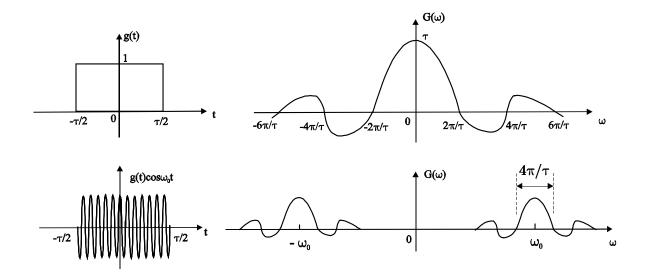
$$g(t)\cos\omega_{0}t = \frac{1}{2}[g(t)e^{j\omega_{0}t} + g(t)e^{-j\omega_{0}t}]$$

Therefore,

$$g(t)\cos\omega_0 t \Leftrightarrow \frac{1}{2}[G(\omega-\omega_0)+G(\omega+\omega_0)]$$

Modulation Theorem

- The multiplication of a time function with a sinusoidal function translates the whole spectrum $G(\omega)$ to $\pm \omega_0$.
- $exp(j\omega_0 t)$ can also provide frequency translation, but it is not a real signal. Hence, sinusoidal function is used in practical modulation system.



Convolution

Suppose that $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$, then, what is the waveform of g(t) whose Fourier transform is the product of $G_1(\omega)$ and $G_2(\omega)$?

This question arises frequently in spectral analysis, and is answered by the *convolution theorem*.

The convolution of two time function $g_1(t)$ and $g_2(t)$, is defined by the following integral

$$g_1(t) * g_2(t) = \int_{-\infty}^{\infty} g_1(\tau) g_2(t-\tau) d\tau$$

Convolution Theorem

Time convolution theorem

If $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$ Then $g_1(t) * g_2(t) \Leftrightarrow G_1(\omega)G_2(\omega)$ $F[g_1(t) * g_2(t)] = \int_{-\infty}^{\infty} [\int_{-\infty}^{\infty} g_1(\tau)g_2(t-\tau)d\tau]e^{-j\omega t}dt$ $= \int_{-\infty}^{\infty} g_1(\tau)[\int_{-\infty}^{\infty} g_2(t-\tau)e^{-j\omega(t-\tau)}dt]e^{-j\omega \tau}d\tau = \int_{-\infty}^{\infty} g_1(\tau)G_2(\omega)e^{-j\omega \tau}d\tau$ $= G_1(\omega)G_2(\omega)$

Frequency convolution theorem

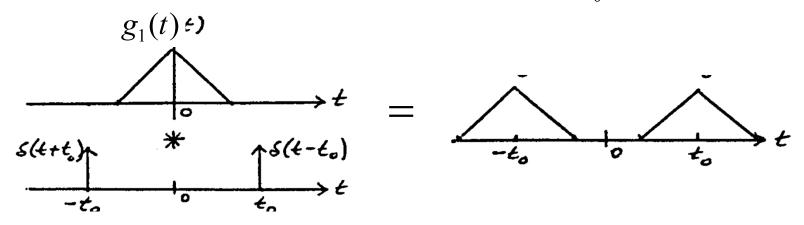
If $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$ Then $g_1(t)g_2(t) \Leftrightarrow \frac{1}{2\pi}G_1(\omega) * G_2(\omega)$

The proof is similar to time convolution theorem.

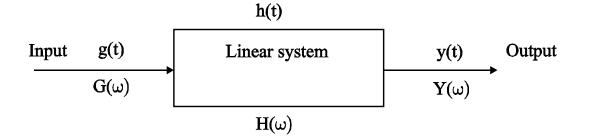
Convolution Theorem: Applications $g_{1}(t) * g_{2}(t) \Leftrightarrow G_{1}(\omega)G_{2}(\omega)$ If we get $(t) = \delta(t - t_{0})$, then $(t) * \delta(t - t_{0}) \Leftrightarrow G_{1}(\omega)e^{-j\omega t_{0}}$ But $G_{1}(\omega)e^{-j\omega t_{0}} \iff G_{1}(\omega)e^{-j\omega t_{0}}$

 $G_1(\omega)e^{-j\omega t_0} \Leftrightarrow g_1(t-t_0)$ (time shifting property)

Therefore, convolving with a delta function shifted in time by t_0 corresponds to a shift of the original signal by t_0



Signal transmission through a linear system



Block diagram of a system

y(t) = g(t) * h(t)when $g(t) \Leftrightarrow G(\omega)$, $h(t) \Leftrightarrow H(\omega)$, $y(t) \Leftrightarrow Y(\omega)$, h(t) is the impulse response, i.e. if the input is $\delta(t)$, then y(t) = h(t). By convolution theorem

 $Y(\omega) = G(\omega)H(\omega)$

where $H(\omega)$ is the system transfer function.

Signal power

- Signal-to-noise ratio (S/N) is an important parameter used to evaluate the system performance.
- Noise, being random in nature, cannot be expressed as a time function, like deterministic waveform. It is represented by power.

Hence, to evaluate the S/N, it is necessary to evolve a method for calculating the signal power.

For a general time domain signal g(t), its *average power* is given by $P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt$

For a periodic signal, each period contains a replica of the function, and the limiting operation can be omitted as long as T is taken as the period.

For a real signal

$$P = \overline{g^2(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t) dt$$

Example

Find the power of a sinusoidal signal $\cos \omega_0 t$. Solution $P = \overline{\cos^2(\omega_0 t)} = \frac{1}{T} \int_{-T/2}^{T/2} \frac{1 + \cos 2\omega_0 t}{2} dt = \frac{1}{2T} (t + \frac{\sin 2\omega_0 t}{2\omega_0}) \Big|_{-T/2}^{T/2} = \frac{1}{2}$

Is it also possible to determine the signal power in frequency domain?

Frequency domain representation for signals of arbitrary waveshape

When dealing with *deterministic* signals, knowledge of the spectrum implies knowledge of the time domain signal.

For an arbitrary (*random*) signal, Fourier analysis cannot be used because g(t) is not known *analytically*.

For such an undeterministic signal (which include information signals and noise waveforms), the power spectrum $S_g(\omega)$ (or power spectral density) concept is used.

The power spectrum describes the distribution of power versus frequency.

The average signal power is then given by

$$P = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_g(\omega) d\omega = \frac{1}{\pi} \int_{0}^{\infty} S_g(\omega) d\omega$$

where $S_g(\omega) > 0$ for all ω .

Another way to evaluate the signal power!

Correlation

Correlation measure of similarity between one waveform, and time delayed version of the other waveform.

The **autocorrelation** function is a special case of convolution, and it measures the similarity of a function with its delayed replica, and is given by

$$R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) g^*(t+\tau) dt$$

Important properties of autocorrelation (1) the *autocorrelation for* $\tau = \theta$ is *average power of the signal*

$$R(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) g^{*}(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^{2} dt = P$$

The third way to evaluate signal power!

(2) power spectral density $S_g(\omega)$ and autocorrelation function of a power signal are Fourier transform pair

$$R(\tau) \Leftrightarrow S_g(\omega)$$

Exercise Problems (Signal Analysis)

- 1. Evaluate the integrals
- $\int_{-\infty}^{\infty} e^{\cos t} \delta(t-\pi) dt \qquad \int_{1}^{\infty} e^{-2x} \delta(x) dx \qquad \int_{-\infty}^{\infty} e^{-t} \delta(t+3) dt$ $\int_{-\infty}^{\infty} \delta(2t-4)(2t^2+t-8) dt \qquad \int_{-\infty}^{\infty} \cos(9t) \delta(t-2) dt$
- 2. Simplify the following expressions: (a) $[\sin t/(t + 2)] \delta(t);$ (b) $[1/(j\omega + 2)] \delta(\omega + 3);$ (c) $[\sin(k\omega)/\omega] \delta(\omega);$
- 3. Calculate the (a) average value, (b) ac power, and (c) average power of the periodic waveform $v(t) = 1 + \cos \omega_0 t$.

- 4. Prove that $\delta(at) = \frac{1}{|a|} \delta(t)$
- 5. If $g(t) \Leftrightarrow G(\omega)$, then show that $g^*(t) \Leftrightarrow G^*(-\omega)$.

6. Find the Fourier transform of the signal $f(t) = [A + f_m(t)]\cos\omega_c t$ if $f_m(t)$ has a spectrum $F_m(\omega)$.

- 7. If f(t) has a spectrum F(ω), find the Fourier transform of the following functions: (a) f(t/2 5);(b) f(3 3t); (c) f(2 + 5t);
- 8. Determine the average power of the following signals: (a) $A\cos\omega_0 t + B \sin\omega_0 t$; (b) $(A + \sin\omega_0 t) \cos\omega_0 t$;

Math. Table

Properties of Fourier Transform Linearity: $a_1g_1(t) + a_2g_2(t) \Leftrightarrow a_1G_1(\omega) + a_2G_2(\omega)$

Linearity: Symmetry: If $g(t) \Leftrightarrow G(\omega)$, $g(t) \Leftrightarrow a_1G_1(\omega) + a_2G_2(\omega)$ Time scaling: $g(at) \Leftrightarrow \frac{1}{G}(\frac{\omega}{\omega})$

Time shifting: Frequency shifting: Modulation theorem: Time convolution:

 $g(at) \Leftrightarrow \frac{1}{|a|} G(\frac{\omega}{a})$ $g(t-t_0) \Leftrightarrow G(\omega) e^{-j\omega t_0}$ $g(t) e^{j\omega_0 t} \Leftrightarrow G(\omega - \omega_0)$ $g(t) \cos \omega_0 t \Leftrightarrow \frac{1}{2} [G(\omega - \omega_0) + G(\omega + \omega_0)]$ $g_1(t) * g_2(t) \Leftrightarrow G_1(\omega) G_2(\omega)$

Frequency convolution:
$$g_1(t)g_2(t) \Leftrightarrow \frac{1}{2\pi}G_1(\omega) * G_2(\omega)$$
Conjugate functions: $g^*(t) \Leftrightarrow G^*(-\omega)$

Time differentiation: Time integration:

$$\frac{d}{dt}g(t) \Leftrightarrow j\omega G(\omega)$$
$$\int_{-\infty}^{t} g(\tau)d\tau \Leftrightarrow \frac{1}{j\omega}G(\omega) + \pi G(0)\delta(\omega)$$