Fourier Transiorm
Properties



Properties of Fourier Transform

Linearity property
It gt < G(o) and  g,(t) & G,(w)
then a,g,(t) + a,8,(t) < a,G,(®) + 2,G,(0)

where a, and a, are constants

This property is proved easily by linearity property of integrals
used in defining Fourier transform



Properties of Fourier Transform

Symmetry property
If g(t) < G(w), then G(t) < 2ng(- ®)
Proof

1 f Jjot
)=~ joo G(w)e’" dw
2rg(—t) = T G(w)e " dw
we can interchange the variable t and , 1.e. lett > ®, ® — t, then

2rg(~w) = T G(t)e ' dt

G e 2rg(-w)



Properties of Fourier Transform

Time scaling property |

glat) & —G(Z
q| " a
Proo °°
f Flg(a)]= | glat)e "™ dt
let x = at, then dt = dx/a, N
case 1: whena> 0,

Flg(an] == | g(e " “dx=—G(2)

case 2: whena <0, thent — o leads to x — - o,

Flg(an] == [ g(x)e " “dr =+ [ g(x)e " *dx = -~ G(2)
a- a- a a

Combined, the two cases are expressed as, 1
g(at) < ‘; G(;)



Properties of Fourier Transform
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Important Observation:
Time domain compression of a signal results in spectral expansion
Time domain expansion of a signal results in spectral compression




Properties of Fourier Transform

Time shifting property
g(t—t) < G(w)e '™

Proof .
Flg(t—1)]= | glt—t,)e " dt

put t — t, = X, so that dt = dx, then

Flg(t—1)]= [ ge " dv=e7" [ g(x)e””dx = Gw)e ™

Frequency shifting property |
g(H)e™ < G(o-w,)

Proof - o
Flg(t)e’™] = J g(t)e e’ ™dt = J g()e ™' dt = G(w - w,)



Properties of Fourier Transform

Significance

* Multiplication of a function g(t) by exp(jw,t) is equivalent to
shifting its Fourier transform in the positive direction by an
amount @, -- Frequency translation theorem.

*  Translation of a spectrum helps in achieving modulation, which
is performed by multiplying the known signal g(t) by a
sinusoidal signal.

g(0)cos 0t = g0e™ +g(e "™
Therefore,

g(t)coswt & %[G(a) —w,)+G(o+w,)]



Modulation Theorem

* The multiplication of a time function with a sinusoidal
function translates the whole spectrum G(w) to tm,.

* exp(jo,t) can also provide frequency translation, but it is
not a real signal. Hence, sinusoidal function is used in
practical modulation system.
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Properties of Fourier Transform

Convolution

Suppose that g,(t) < G,(®) and g,(t) & G,(®), then,

what is the waveform of g(t) whose Fourier transform is the
product of G(w) and G,(w)?

This question arises frequently in spectral analysis, and is
answered by the convolution theorem.

The convolution of two time function g,(t) and g,(t), is defined
by the following integral

g ()*g,() = [ g(0)g,(t—7)dr



Convolution Theorem

Time convolution theorem

It g,(t) & G(®) and 2(t) < G,(0)

Then g1(t) * g(H) = G(0)Gy(®)
Fla®)*2.01= [ [ g (Dg.—r)dele " dr

—00 —00

= [ & @[ &~ 0)e ™ drle " dr = [ g,(1)Gy(@w)e " dr

=G (0)G, (o)
Frequency convolution theorem
If g,(t) < G, (w) and g,(t) < G, (w)
Then

g,(g, ()= 2LG1 (@) *G, ()
T

The proof'is similar to time convolution theorem.



Convolution Theorem: Applications

g,(t) * g,(t) < G(0)G, (o)

IFweds()=6(—1,)  uglt)*5(t—1,) < G, (@)™
But

G, (w)e '™ < g,(t—1t,) (time shifting property)

Therefore, convolving with a delta function shifted in time by {,
corresponds to a shift of the original signal by ly
g,(1)e
S(éff;)]\ * Tg(é'éo) "'éo j'o ';o €
Il > é




Signal transmission through a linear system

h(t)

Input gt Linear system y(t) Output
G(w) Y(w) ]
H(w)
Block diagram of a system

y(t) = g(t) * h(t)
when g(t) © G(w), h(t) & H(®), y(t) & Y(®), h(t) is the
impulse response, i.e. if the input is o(t), then y(t) = h(t).
By convolution theorem
Y (o) = G(o)H(w)
where H(®) is the system transfer function.



Signal Analysis

Signal power

* Signal-to-noise ratio (S/N) is an important parameter used
to evaluate the system performance.

* Noise, being random in nature, cannot be expressed as a
time function, like deterministic waveform. It is
represented by power.

Hence, to evaluate the S/N, it is necessary to evolve a method for
calculating the signal power.

For a general time domain signal g(t), its average power is
given by e )
P:PE}O? j |g(t)| dt

-T/2



Signal Analysis

For a periodic signal, each period contains a replica of the
function, and the limiting operation can be omitted as long as
T is taken as the period.

For a real signal

1 T/2
_ 2 — 1 2
P=gi0)=lim— [ g*(dr

-T/2

Example
Find the power of a sinusoidal signal cosm,t.
Solution —5—— 1 "¢ 1+cos2aw,t 1 sin2ayt | 72 1
P =cos™(wyt) =— _[ ————dt =—(t+ W h==
T, 2 27 2w, 2

Is it also possible to determine the signal power in frequency domain?



Signal Analysis

*

Frequency domain representation for signals of
arbitrary waveshape

When dealing with deterministic signals, knowledge of
the spectrum implies knowledge of the time domain
signal.

For an arbitrary (random) signal, Fourier analysis
cannot be used because g(t) 1s not known analytically.

For such an undeterministic signal (which include

information signals and noise waveforms), the power
spectrum S (®) (or power spectral density) concept 1s
used.



* Signal Analysis

The power spectrum describes the distribution of
power versus frequency.

The average signal power 1s then given by
P= 1 T S (w)dw = lTS (w)dw
2 d ¢ Ty ©
where S (w) >0 forall o.

Another way to evaluate the signal power!



Signal Analysis

Correlation
Correlation measure of similarity between one waveform, and
time delayed version of the other waveform.

The autocorrelation function is a special case of convolution,
and it measures the similarity of a function with its delayed
replica, and is given by

T/2
1

R(@)=lim— [ g()g'(t+o)dr

-T/2



Signal Analysis

Important properties of autocorrelation
(1) the autocorrelation for v = 0 is average power of the signal

1 T/2 1 T/2 )
R(0) = lim — g (H)dt=lim— ) dt=P
(0) T%T_Tf/zﬂ )g' (1) T%T_Tj/z\m )

The third way to evaluate signal power!

(2) power spectral density S,(®) and autocorrelation function
of a power signal are Fourier transform pair

R(7) = S, (@)



Exercise Problems (Signal Analysis)

1. Evaluate the integrals

o0 0

[e s(—myat [e 5 (x)ax [e'5(e+3)dt
—0 1 —©
[s@t-4)2t* +1-8)ar [cos@ns(t - 2)at

—0o0

2. Simplify the following expressions:
(a) [sint/(t + 2)] o(t); (b) [1/(o +2)] o(® + 3);
(¢) [sin(kw)/®] o(w);

3. Calculate the (a) average value, (b) ac power, and (c¢) average
power of the periodic waveform v(t) =1 + cosw,t.



Exercise Problems (Signal Analysis)

4. Prove that d(at) = L5(t)

4]

5. If g(t) & G(w), then show that g*(t) < G*(-m).

6. Find the Fourier transform of the signal {(t) = [A + {_(t)]cosm_t
if £_(t) has a spectrum F_(m).

7. If {(t) has a spectrum F(w), find the Fourier transform of the
following functions: (a) f(t/2 — 5);(b) f(3 — 3t); (c¢) f(2 + 5t);

8. Determine the average power of the following signals:
(a) Acosmyt + B sinwyt; (b)) (A + sinw,t) cosmyt;



Math. Table

Properties of Fourier Transtform

Linearity: a,;g,(t) + a,g,(t) © a,G(») + a,G,(m)
Symmetry: If g(t)  G(m), then G(t) & 2ng(- o)
Time scaling: g(at)c,ﬁg(ﬂ)

Time shifting: g(t—t)) = G(w)e ™

Frequency shifting: gne™ <G ga) — @)
Modulation theorem:  &()coso < J[G(@-0))+G(@+o,)]
Time convolution: g,(t) * g,(t) © G (0)G,(w)

1
Frequency convolution: & (1)g:(1) = ——G(@)*6, ()
Conjugate functions: g*(t)  G*(-m)

) i .. d .
Time differentiation: s (1) & joG (o)
Time integration: [ g()dr & L G(w) + 26(0)5()
.. jo



