Digital Signal Processing

l-Transform \& ROC

Introduction to Signals and Systems

Z- Transform
The z-Transform is a special case of the Laplace transform and results from applying the Laplace transform to a discrete-time signal.

The z-Transform behaves much like the Laplace transform and can be applied to difference equations to produce frequency and time domain responses.

Definition:

The z-transform of a discrete time signal is defined as the power series

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Where z is a complex variable. For convenience, the z-transform of a signal $x[n]$ is denoted by

$$
X(\mathrm{z})=\mathrm{Z}\{\mathrm{x}[\mathrm{n}]\}
$$

Since the z-transform is an infinite series, it exists only for those values of z for which this series converges. The Region of Convergence (ROC) of $X(z)$ is the set of all values of z for which this series converges.
We illustrate the concepts by some simple examples.

Region of Convergence (ROC

- ROC: The set of values of z for which the z-transform converges
- The region of convergence is made of circles
- Example: z-transform converges for values of $0.5<\mathrm{r}<2$
ROC is shown on the left
In this example the ROC includes the unit circle, so DTFT exists

Example 1: Determine the z-transform of the following signals:
(a) $x[n]=[1,2,5,7,0,1]$

Solution: $X(z)=1+2 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5}$,
ROC: entire z plane except $z=0$
(b) $y[n]=[1,2,5,7,0,1]$

Solution: $Y(z)=z^{2}+2 z+5+7 z^{-1}+z^{-3}$
ROC: entire z-plane except $z=0$ and $z=\infty$.
(c) $z[n]=[0,0,1,2,5,7,0,1]$

Solution: $z^{-2}+2 z^{-3}+5 z^{-4}+7 z^{-5}+z^{-7}$, ROC: all z except $z=0$
(d) $\mathrm{p}[\mathrm{n}]=\delta[\mathrm{n}]$

Solution: $\mathrm{P}(\mathrm{z})=1$, ROC: entire z -plane.
(e) $q[n]=\delta[n-k], k>0$

Solution: $Q(z)=z^{-k}$, entire z-plane except $\mathrm{z}=0$.
(f) $\mathrm{r}[\mathrm{n}]=\delta[\mathrm{n}+\mathrm{k}], \mathrm{k}>0$

Solution: $R(z)=z^{k}$,
ROC: entire z-plane except $z=\infty$.

Example 2: Determine the z-transform of $(1 / 2)^{n} u[n] x[n]=$

Solution:

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n} \\
& =1+\frac{1}{2} z^{-1}+\left(\frac{1}{2} z\right)^{-2}+\ldots \ldots . . \\
& =\frac{1}{1-\frac{1}{2} z^{-1}}
\end{aligned}
$$

ROC: $\left|1 / 2 z^{-1}\right|<1$, or equivalently $|z|>1 / 2$

Example 3: Determine the z-transform of the signal $x[n]=a^{n} u[n]$

Solution:
Right-Sided Exponential Sequence

$$
x[n]=a^{n} u[n] \Rightarrow x(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

- Inside the ROC series converges to
- Region outside the circle of radius a is the ROC
- Right-sided sequence ROCs extend outside a circle

$$
x(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

Example 4: Left-Sided Exponential Sequence

$$
\begin{aligned}
& x[n]=-a^{n} u[-n-1] \\
& X(z)=-\sum_{n=-\infty}^{\infty} a^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n} \\
& =-\sum_{n=1}^{\infty}\left(a^{-1} z\right)^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n} \\
& R O C: \\
& \sum_{n=0}^{\infty}\left|a^{-1} z\right|^{n}<\infty \Rightarrow\left|a^{-1} z\right|<1 \Rightarrow|z|<|a| \\
& X(z)=1-\frac{1}{1-a^{-1} z}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
\end{aligned}
$$

Example 5: Two-Sided Exponential Sequence

$$
\begin{gathered}
x[n]=\left(-\frac{1}{3}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[-n-1] \\
\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n}=\frac{\left(-\frac{1}{3} z^{-1}\right)^{0}-\left(-\frac{1}{3} z^{-1}\right)^{\infty}}{1+\frac{1}{3} z^{-1}}=\frac{1}{1+\frac{1}{3} z^{-1}} \\
\sum_{n=-\infty}^{-1}\left(\frac{1}{2} z^{-1}\right)^{n}=\frac{\left(\frac{1}{2} z^{-1}\right)^{-\infty}-\left(\frac{1}{2} z^{-1}\right)^{0}}{1-\frac{1}{2} z^{-1}}=\frac{-1}{1-\frac{1}{2} z^{-1}} \\
X(z)=\frac{1}{1+\frac{1}{3} z^{-1}}+\frac{1}{1-\frac{1}{2} z^{-1}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z+\frac{1}{3}\right)\left(z-\frac{1}{2}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROC : }\left|-\frac{1}{3} z^{-1}\right|<1 \\
& \frac{1}{3}<|z| \\
& \text { ROC }:\left|\frac{1}{2} z^{-1}\right|>1 \\
& \frac{1}{2}>|z|
\end{aligned}
$$

Some common Z-transform pairs

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	$\begin{aligned} & \text { All } z \text { except } 0 \text { (if } m>0 \text {) } \\ & \text { or } \infty(\text { if } m<0) \end{aligned}$
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
7. $n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
8. $-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
9. $\left[\cos \omega_{0} n\right] u[n]$	$\frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\left[\sin \omega_{0} n\right] u[n]$	$\frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
11. $\left[r^{n} \cos \omega_{0} n\right] u[n]$	$\frac{1-\left[r \cos \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $\left[r^{n} \sin \omega_{0} n\right] u[n]$	$\frac{\left[r \sin \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
13. $\begin{cases}a^{n}, & 0 \leq n \leq N-1, \\ 0, & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$

Some common Z-transform pairs

SEQUENCE	TRANSFORM	ROC
$\delta[n]$	1	ALL z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except \quad (if $\mathrm{m}>0$ or δ (if $m<0)$

Some common Z-transform pairs

$$
\begin{array}{cccc}
a^{n} u[n] & \stackrel{z}{\longleftrightarrow} & \frac{1}{1-a z^{-1}} & R O C:|z|>|a| \\
a^{n} u[-n-1] & \longleftrightarrow & \frac{1}{1-a z^{-1}} & R O C:|z|<|a| \\
n a^{n} u[n] & \longleftrightarrow & \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} & R O C:|z|>|a| \\
-n a^{n} u[-n-1] & \longleftrightarrow & \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} & R O C:|z|<|a| \\
{\left[\cos \omega_{0} n\right] u[n]} & \longleftrightarrow & \frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}} & R O C:|z|>1
\end{array}
$$

