Signal Processing

Fourier Transform

- "The Fourier transform is a mathematical operation with many applications in physics and engineering that expresses a mathematical function of time as a function of frequency, known as its frequency spectrum."
	- "For instance, the transform of a musical chord made up of pure notes (without overtones) expressed as amplitude as a function of time, is a mathematical representation of the amplitudes and phases of the individual notes that make it up."
		- "The function of time is often called the time domain representation, and the frequency spectrum the frequency domain representation."

Fourier Transform

Applications

- **Differential equations**
- **Geology**
- **Image and signal processing**
- **Optics**
- **Quantum mechanics**
- \diamond **Spectroscopy**

The *Fourier transform* **of a signal g(t) is defined by**

$$
G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt
$$

and $g(t)$ is called the inverse Fourier transform of $G(\omega)$

$$
g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega t} d\omega
$$

The functions g(t) and G() constitute a Fourier transform pair: $g(t) \Leftrightarrow G(\omega)$ $G(\omega) = F[g(t)]$ and $g(t) = F^{-1}[G(\omega)]$

What is the difference between Fourier transform and Fourier series?

Fourier transform is different from the Fourier Series in that its frequency spectrum is continuous rather than discrete.

Fourier transform is obtained from Fourier series by letting $T \rightarrow \infty$ (for a nonperiodic signal).

The original time function can be uniquely recovered from its Fourier transform.

- *A periodic signal spectrum has finite amplitudes and exists at discrete set of frequencies.* **Those amplitudes are also called the Fourier coefficients of the periodic signal**
- *A non-periodic signal has a continuous spectrum G() and exist at all frequencies.*

Fourier transform of some useful functions

Rectangular function:

$$
= \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt
$$

$$
= \frac{1}{(a - j\omega)} + \frac{1}{(a + j\omega)} = \frac{2a}{a^2 + \omega^2}
$$

Fourier transform of some useful functions

Linearity property

If $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$ **then** $a_1g_1(t) + a_2g_2(t) \Leftrightarrow a_1G_1(\omega) + a_2G_2(\omega)$ where a_1 and a_2 are constants

This property is proved easily by linearity property of integrals used in defining Fourier transform

Symmetry property If $g(t) \Leftrightarrow G(\omega)$, then $G(t) \Leftrightarrow 2\pi g(-\omega)$ *Proof* $\mathcal{L}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega)$ $2\pi g(-t) = \int G(\omega)e^{-j\omega t} d\omega$ $g(t) = \frac{1}{2} \int G(\omega)e^{j\omega t} d\omega$ π ∞ $-\infty$ ∞ \overline{a} $-\infty$ $=\frac{1}{2\pi}$ $-t) = \int$

we can interchange the variable t and ω , i.e. let $t \to \omega$, $\omega \to t$, then

 $2\pi g(-\omega) = | G(t)$ $(t) \Leftrightarrow 2\pi g(-\omega)$ $g(-\omega) = \int G(t)e^{-j\omega t}dt$ $G(t) \Longleftrightarrow 2\pi g$ $\pi g(-\omega) = \int G(t) e^{-j\omega}$ π g($-\omega$ ∞ \overline{a} $-\infty$ $-\omega$) = $\therefore G(t) \Leftrightarrow 2\pi g(\int$

Time scaling property

$$
g(at) \Leftrightarrow \frac{1}{|a|} G(\frac{a}{a})
$$

Proof

$$
F[g(at)] = \int_{-\infty}^{\infty} g(at)e^{-j\omega t}dt
$$

let x = at, then dt = dx/a,
case 1: when a > 0,

$$
F[g(at)] = \frac{1}{a} \int_{-\infty}^{\infty} g(x)e^{-j\omega x/a} dx = \frac{1}{a}G(\frac{\omega}{a})
$$

case 2: when
$$
a < 0
$$
, then $t \to \infty$ leads to $x \to -\infty$,
\n
$$
F[g(at)] = \frac{1}{a} \int_{-\infty}^{\infty} g(x)e^{-j\omega x/a} dx = -\frac{1}{a} \int_{-\infty}^{\infty} g(x)e^{-j\omega x/a} dx = -\frac{1}{a}G(\frac{\omega}{a})
$$

Combined, the two cases are expressed as, $\frac{g}{g}$

$$
g(at) \Leftrightarrow \frac{1}{|a|} G(\frac{a}{a})
$$

Important Observation:

Time domain compression of a signal results in spectral expansion Time domain expansion of a signal results in spectral compression

-

$$
F[g(t-t_0)] = \int_{-\infty}^{\infty} g(x)e^{-j\omega(x+t_0)}dx = e^{-j\omega t_0} \int_{-\infty}^{\infty} g(x)e^{-j\omega x}dx = G(\omega)e^{-j\omega t_0}
$$

 $g(t)e^{j\omega_0 t} \Leftrightarrow G(\omega - \omega_0)$ **Frequency shifting property**

Proof

$$
F[g(t)e^{j\omega_0t}] = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}e^{j\omega_0t}dt = \int_{-\infty}^{\infty} g(t)e^{-j(\omega-\omega_0)t}dt = G(\omega-\omega_0)
$$

Significance

- *Multiplication of a function* $g(t)$ *by* $exp(j\omega_0 t)$ *is equivalent to shifting its Fourier transform in the positive direction by an amount 0. -- Frequency translation theorem***.**
- *Translation of a spectrum* **helps in achieving** *modulation***, which is performed by multiplying the known signal g(t) by a sinusoidal signal.**

$$
g(t)\cos\omega_0 t = \frac{1}{2} [g(t)e^{j\omega_0 t} + g(t)e^{-j\omega_0 t}]
$$

Therefore,

$$
g(t)\cos\omega_0 t \Leftrightarrow \frac{1}{2}[G(\omega - \omega_0) + G(\omega + \omega_0)]
$$

- **The multiplication of a time function with a sinusoidal function translates the whole spectrum** $G(\omega)$ **to** $\pm \omega_0$ **.**
- $exp(j\omega_0 t)$ can also provide frequency translation, but it is **not a real signal. Hence, sinusoidal function is used in practical modulation system.**

Convolution

Suppose that $g_1(t) \Leftrightarrow G_1(\omega)$ **and** $g_2(t) \Leftrightarrow G_2(\omega)$ **, then,** *what is the waveform of g(t) whose Fourier transform is the product of* $G_1(\omega)$ *and* $G_2(\omega)$ *?*

This question arises frequently in spectral analysis, and is answered by the *convolution theorem***.**

The convolution of two time function $g_1(t)$ and $g_2(t)$, is defined **by the following integral**

$$
g_1(t) * g_2(t) = \int_{-\infty}^{\infty} g_1(\tau) g_2(t-\tau) d\tau
$$

Convolution Theorem

Time convolution theorem

If $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$ Then $g_1(t) * g_2(t) \Leftrightarrow G_1(\omega)G_2(\omega)$ $F[g_1(t)*g_2(t)] = \int \left[\int g_1(\tau)g_2(t-\tau)d\tau \right] e^{-j\omega t}dt$ $(t-\tau)$ $g_1(\tau) [\int g_2(t-\tau) e^{-j\omega(t-\tau)} dt] e^{-j\omega\tau} d\tau = \int g_1(\tau) G_2(\omega) e^{-j\omega\tau} d\tau$ $=G_1(\omega)G_2(\omega)$ ∞ ∞ * $g_2(t)$] = $\int [\int g_1(\tau)g_2(t-\tau)d\tau]e^{-t}$ $-\infty$ $-\infty$ ∞ , where ∞ , and ∞ , and ∞ $-i\omega(t-\tau) d\tau$ ₁₀-j $\omega \tau$ _{τ} $\int \alpha (\tau) C(\omega) e^{-\tau}$ $-\infty$ $-\infty$ $=\int g_1(\tau)[\int g_2(t-\tau)e^{-j\omega(t-\tau)}dt]e^{-j\omega\tau}d\tau=\int$

Frequency convolution theorem

If $g_1(t) \Leftrightarrow G_1(\omega)$ and $g_2(t) \Leftrightarrow G_2(\omega)$ Then $1^{(i)}\delta_2^{(i)} \rightarrow 2^{i}$ $g_1(t) g_2(t) \Longleftrightarrow \frac{1}{2\pi} G_1(\omega) * G_2(\omega)$ \Leftrightarrow $\frac{1}{2}G_1(\omega)*$

The proof is similar to time convolution theorem.

If we $\mathbf{g}_{\mathbf{g}}(t) = \delta(t - t_0)$, $\mathbf{t}_{\mathbf{g}}(t) * \delta(t - t_0) \Leftrightarrow G_1(\omega) e^{-j\omega t_0}$ **Convolution Theorem: Applications** $g_1(t) * g_2(t) \Leftrightarrow G_1(\omega)G_2(\omega)$ $G_1(\omega)e^{-j\omega t_0} \Leftrightarrow g_1(t-t_0)$ (time shifting property) But

Therefore, convolving with a delta function shifted in time by corresponds to a shift of the original signal by $t₀$ t_0

Signal transmission through a linear system

Block diagram of a system

 $y(t) = g(t) * h(t)$ when $g(t) \Leftrightarrow G(\omega)$, $h(t) \Leftrightarrow H(\omega)$, $y(t) \Leftrightarrow Y(\omega)$, $h(t)$ is the **impulse response, i.e. if the input is** $\delta(t)$ **, then** $y(t) = h(t)$ **. By convolution theorem**

 $Y(\omega) = G(\omega)H(\omega)$

where $H(\omega)$ is the system transfer function.

Signal power

- **Signal-to-noise ratio (S/N) is an important parameter used to evaluate the system performance.**
- **Noise, being random in nature, cannot be expressed as a time function, like deterministic waveform. It is represented by power.**

*Hence, to evaluate the S/N, it is necessary to evolve a method for calculating the signal power***.**

For a general time domain signal g(t), its *average power* **is given by** $\frac{1}{2} \int_{1}^{T/2} |f(x)|^2 dx$ $/2$ $\lim_{\substack{\longrightarrow \\ n \rightarrow \infty}} \frac{1}{n} \int_{0}^{T/2} |g(t)|^2 dt$ *T T* $P = \lim_{T \to \infty} \frac{1}{T} \left| g(t) \right|^2 dt$ $\rightarrow \infty$ T_{-} $=\lim_{T\to\infty}\frac{1}{T}$

*For a periodic signal, each period contains a replica of the function, and the limiting operation can be omitted as long as T is taken as the period***.**

For a real signal

$$
P = \overline{g^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^{2}(t) dt
$$

Example

Find the power of a sinusoidal signal
$$
\cos\omega_0 t
$$
.
\nSolution
\n
$$
P = \frac{1}{\cos^2(\omega_0 t)} = \frac{1}{T} \int_{-T/2}^{T/2} \frac{1 + \cos 2\omega_0 t}{2} dt = \frac{1}{2T} (t + \frac{\sin 2\omega_0 t}{2\omega_0}) \Big|_{-T/2}^{T/2} = \frac{1}{2}
$$

Is it also possible to determine the signal power in frequency domain?

Frequency domain representation for signals of arbitrary waveshape

When dealing with *deterministic* signals, knowledge of the spectrum implies knowledge of the time domain signal.

For an arbitrary (*random*) signal, Fourier analysis cannot be used because g(t) is not known *analytically*.

For such an undeterministic signal (which include information signals and noise waveforms), the power spectrum $S_{\varphi}(\omega)$ (or power spectral density) concept is used.

The power spectrum describes the distribution of power versus frequency.

The average signal power is then given by

$$
P = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_g(\omega) d\omega = \frac{1}{\pi} \int_{0}^{\infty} S_g(\omega) d\omega
$$

where $S_g(\omega) > 0$ for all ω .

Another way to evaluate the signal power!

Correlation

Correlation **measure of similarity between one waveform, and time delayed version of the other waveform.**

The autocorrelation function is a special case of convolution, and it measures the similarity of a function with its delayed replica, and is given by

$$
R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) g^{*}(t+\tau) dt
$$

Important properties of autocorrelation (1) the *autocorrelation for* $\tau = 0$ is *average power of the signal*

$$
R(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) g^{*}(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^{2} dt = P
$$

The third way to evaluate signal power!

(2) power spectral density $S_g(\omega)$ **and autocorrelation function of a power signal are Fourier transform pair**

$$
R(\tau) \Longleftrightarrow S_g(\omega)
$$

Exercise Problems (Signal Analysis)

- 1. Evaluate the integrals
	- \int ∞ $-\infty$ $e^{\cos t}\delta(t-\pi)dt$ \int ∞ $e^{-2x}\delta(x)dx$ 1 ∞ $-\infty$ $e^{-t}\delta(t+3)dt$ \int ∞ $\int_{-\infty}^{0} \delta(2t-4)(2t^2+t-8)dt$ ∞ $-\infty$ $cos(9t)\delta(t-2)dt$ 2. Simplify the following expressions:
	- (a) $\left[\sin t/(t + 2)\right] \delta(t);$ (b) $\left[\frac{1}{(\omega + 2)}\right] \delta(\omega + 3);$ (c) $\left[\sin(k\omega)/\omega\right] \delta(\omega);$
- 3. Calculate the (a) average value, (b) ac power, and (c) average power of the periodic waveform $v(t) = 1 + \cos \omega_0 t$.

Exercise Problems (Signal Analysis)

4. Prove that δ

$$
\delta(at) = \frac{1}{|a|} \delta(t)
$$

5. If $g(t) \Leftrightarrow G(\omega)$, then show that $g^*(t) \Leftrightarrow G^*(-\omega)$.

6. Find the Fourier transform of the signal $f(t) = [A + f_m(t)]cos\omega_c t$ if f_m(t) has a spectrum $F_m(\omega)$.

- 7. If f(t) has a spectrum $F(\omega)$, find the Fourier transform of the following functions: (a) $f(t/2 - 5)$;(b) $f(3 - 3t)$; (c) $f(2 + 5t)$;
- 8. Determine the average power of the following signals: (a) $A\cos\omega_0 t + B \sin\omega_0 t$; (b) $(A + \sin\omega_0 t) \cos\omega_0 t$;

Math. Table

Properties of Fourier Transform

Linearity:
Symmetry: If Symmetry: Time scaling:

Time shifting: Frequency shifting: Modulation theorem**:** Time convolution:

Frequency convolution: Conjugate functions:

Time differentiation: Time integration:

urier transiorm

\n
$$
a_1 g_1(t) + a_2 g_2(t) \Leftrightarrow a_1 G_1(\omega) + a_2 G_2(\omega)
$$
\n
$$
g(t) \Leftrightarrow G(\omega), \qquad \text{then} \qquad G(t) \Leftrightarrow 2\pi g(-\omega)
$$
\n
$$
g(\omega) \Leftrightarrow \frac{1}{|a|} G(\frac{\omega}{a})
$$
\n
$$
g(t - t_0) \Leftrightarrow G(\omega) e^{-j\omega t_0}
$$
\n
$$
g(t) e^{j\omega_0 t} \Leftrightarrow G(\omega - \omega_0)
$$
\n
$$
g(t) \cos \omega_0 t \Leftrightarrow \frac{1}{2} [G(\omega - \omega_0) + G(\omega + \omega_0)]
$$
\n
$$
g_1(t)^* g_2(t) \Leftrightarrow G_1(\omega) G_2(\omega)
$$
\non: $g_1(t) g_2(t) \Leftrightarrow \frac{1}{2\pi} G_1(\omega) * G_2(\omega)$

\n
$$
g^*(t) \Leftrightarrow G^*(-\omega)
$$

$$
\frac{d}{dt}g(t) \Leftrightarrow j\omega G(\omega)
$$

$$
\int_{-\infty}^{t} g(\tau)d\tau \Leftrightarrow \frac{1}{j\omega}G(\omega) + \pi G(0)\delta(\omega)
$$