
Signal Processing

Fourier Transform



• “The Fourier transform is a mathematical operation with
many applications in physics and engineering that expresses a
mathematical function of time as a function of frequency,
known as its frequency spectrum.”

Fourier Transform

 “For instance, the transform of a musical chord made up of
pure notes (without overtones) expressed as amplitude as a
function of time, is a mathematical representation of the
amplitudes and phases of the individual notes that make it
up.”

 “The function of time is often called the time domain
representation, and the frequency spectrum the frequency
domain representation.”



Fourier Transform

Applications

 Differential equations

 Geology

 Image and signal processing

 Optics

 Quantum mechanics

 Spectroscopy



Fourier Transform

The Fourier transform of a signal g(t) is defined by

and g(t) is called the inverse Fourier transform of G()
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The functions g(t) and G() constitute a Fourier transform pair: 

g(t)  G()
G() = F[g(t)] and g(t) =  F -1[G()]

What is the difference between Fourier transform and Fourier 
series?



Fourier Transform

Fourier transform is different from the Fourier Series 
in that its frequency spectrum is continuous rather 
than discrete.  

Fourier transform is obtained from Fourier series by 
letting  T  (for a nonperiodic signal).

The original time function can be uniquely recovered 
from its Fourier transform.



Fourier Transform and Fourier Series

• A periodic signal spectrum has finite amplitudes and 
exists at discrete set of frequencies. Those 
amplitudes are also called the Fourier coefficients 
of the periodic signal

• A non-periodic signal has a continuous spectrum
G() and exist at all frequencies.



Fourier transform of some useful functions

Rectangular function:
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Unit impulse function: (t)  1 and 1  2()
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Fourier transform of some useful functions
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Example 1 
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Sinusoidal function cos(0t)
cos(0t)  [( + 0) + ( - 0)]
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Fourier transform of some useful functions



Properties of Fourier Transform

Linearity property
If g1(t)  G1() and g2(t)  G2()
then a1g1(t) + a2g2(t)  a1G1() + a2G2()
where a1 and a2 are constants

This property is proved easily by linearity property of integrals 
used in defining Fourier transform



Symmetry property
If g(t)  G(), then G(t)  2g(- )
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we can interchange the variable t and , i.e. let t ,  t, then

Properties of Fourier Transform



Time scaling property
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let x = at, then dt = dx/a, 
case 1: when a > 0, 
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case 2: when a < 0, then t  leads to x  - ,
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Combined, the two cases are expressed as, 1
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Properties of Fourier Transform



Important Observation:
Time domain compression of a signal results in spectral expansion
Time domain expansion of a signal results in spectral compression

Properties of Fourier Transform



Time shifting property
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put t – t0 = x, so that dt = dx, then
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Significance
• Multiplication of a function g(t) by exp(j0t) is equivalent to 

shifting its Fourier transform in the positive direction by an 
amount 0. -- Frequency translation theorem.

• Translation of a spectrum helps in achieving modulation, which 
is performed by multiplying the known signal g(t) by a 
sinusoidal signal. 
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• The multiplication of a time function with a sinusoidal 
function translates the whole spectrum G() to 0.

• exp(j0t) can also provide frequency translation, but it is 
not a real signal. Hence, sinusoidal function is used in 
practical modulation system.

Modulation Theorem



Convolution
Suppose that g1(t)  G1() and g2(t)  G2(), then,
what is the waveform of g(t) whose Fourier transform is the 

product of G1() and G2()?
This question arises frequently in spectral analysis, and is 

answered by the convolution theorem.

The convolution of two time function g1(t) and g2(t), is defined 
by the following integral
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Convolution Theorem

Time convolution theorem
If g1(t)  G1() and g2(t)  G2()
Then g1(t) * g2(t)  G1()G2()
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Frequency convolution theorem
If g1(t)  G1() and g2(t)  G2()
Then
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Convolution Theorem: Applications

g1(t) * g2(t)  G1()G2()
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Signal transmission through a linear system

y(t) = g(t) * h(t)
when g(t)  G(), h(t)  H(), y(t)  Y(), h(t) is the
impulse response, i.e. if the input is  (t),  then  y(t)  =  h(t).
By convolution theorem

Y() = G()H()
where H() is the system transfer function.



Signal Analysis

Signal power
• Signal-to-noise ratio (S/N) is an important parameter used 

to evaluate the system performance. 
• Noise, being random in nature, cannot be expressed as a 

time function, like deterministic waveform. It is 
represented by power. 

Hence, to evaluate the S/N, it is necessary to evolve a method for 
calculating the signal power.

For a general time domain signal g(t), its average power is 
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Signal Analysis

For a periodic signal, each period contains a replica of the 
function, and the limiting operation can be omitted as long as 
T is taken as the period.

For a real signal
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Example
Find the power of a sinusoidal signal cos0t.
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Is it also possible to determine the signal power in frequency domain?



Frequency domain representation for signals of 
arbitrary waveshape
When dealing with deterministic signals, knowledge of
the spectrum implies knowledge of the time domain
signal.

For an arbitrary (random) signal, Fourier analysis
cannot be used because g(t) is not known analytically.

For such an undeterministic signal (which include
information signals and noise waveforms), the power
spectrum Sg() (or power spectral density) concept is
used.

Signal Analysis



The power spectrum describes the distribution of 
power versus frequency.

The average signal power is then given by

where  Sg()  0  for all  .  

Another way to evaluate the signal power!
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Signal Analysis

Correlation
Correlation measure of similarity between one waveform, and
time delayed version of the other waveform. 

The autocorrelation function is a special case of convolution, 
and it measures the similarity of a function with its delayed 
replica, and is given by
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Signal Analysis

Important properties of autocorrelation
(1) the autocorrelation for  = 0 is average power of the signal

The third way to evaluate signal power!

(2) power spectral density Sg() and autocorrelation function 
of a power signal are Fourier transform pair
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Exercise Problems (Signal Analysis)

1. Evaluate the integrals
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2. Simplify the following expressions:
(a) [sint/(t + 2)] (t); (b) [1/(j +2)] ( + 3);
(c) [sin(k)/] ();

3. Calculate the  (a) average value, (b) ac power, and (c) average 
power of the periodic waveform v(t) = 1 + cos0t.



Exercise Problems (Signal Analysis)

4. Prove that 1
( ) ( )at t

a
 

5. If g(t)  G(), then show that g*(t)  G*(-).

6. Find the Fourier transform of the signal f(t) = [A + fm(t)]cosct
if fm(t) has a spectrum Fm().

7. If f(t) has a spectrum F(), find the Fourier transform of the 
following functions:  (a) f(t/2 – 5);(b) f(3 – 3t); (c) f(2 + 5t);

8. Determine the average power of the following signals:
(a) Acos0t + B sin0t; (b) (A + sin0t) cos0t;



Math. Table

Properties of Fourier Transform
Linearity: a1g1(t) + a2g2(t)  a1G1() + a2G2()
Symmetry: If g(t)  G(), then G(t)  2g(- )
Time scaling:

Time shifting:
Frequency shifting:
Modulation theorem:
Time convolution: g1(t) * g2(t)  G1()G2()

Frequency convolution:
Conjugate functions: g*(t)  G*(-)

Time differentiation:
Time integration:
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