	Strength of materials		Chapter two
--	-----------------------	--	-------------

Thermal Stresses:

The change in temperature causes bodies to expand or contract, the amount of linear deformation (Δ th) is expressed as follows:

 $\Delta th = \alpha x L x \Delta T$

where:

 α ------The coefficient of linear deformation in unit of (m/m.C^o)

L-----Length of the body (m)

 Δ T-----Temperature change (C°).

A general procedure for computing the loads and stresses caused when thermal deformation happened as result for temperature changing is outlines in steps:

1-Assume that the body is free from all applied loads and constraints so that thermal deformations can occur freely.

2- Apply sufficient load to the body to restore it to the original condition 3- Solve to find unknowns, using equations of equilibrium and equations which are obtained from geometric relations between the temperature and load deformation.

Example:

A rod consisting of two cylindrical portions *AB* and *BC* is restrained at both ends. Portion *AB* is made of steel ($E_s = 200$ GPa, $\alpha_s = 11.7 \times 10^{-6}$ /°C) and portion *BC* is made of brass ($E_b = 105$ GPa, $\alpha_b = 20.9 \times 10^{-6}$ /°C). Knowing that the rod is initially unstressed, determine the compressive force induced in *ABC* when there is a temperature rise of 50 °C.

Strength of materialsChapter two

SOLUTION

$$A_{AB} = \frac{\pi}{4} d_{AB}^2 = \frac{\pi}{4} (30)^2 = 706.86 \text{ mm}^2 = 706.86 \times 10^{-6} \text{ m}^2$$
$$A_{BC} = \frac{\pi}{4} d_{BC}^2 = \frac{\pi}{4} (50)^2 = 1.9635 \times 10^3 \text{ mm}^2 = 1.9635 \times 10^{-3} \text{ m}^2$$

Free thermal expansion:

$$\delta_T = L_{AB} \alpha_s (\Delta T) + L_{BC} \alpha_b (\Delta T)$$

= (0.250)(11.7×10⁻⁶)(50) + (0.300)(20.9×10⁻⁶)(50)
= 459.75×10⁻⁶ m

01

B

C

Shortening due to induced compressive force P:

$$\delta_{P} = \frac{PL}{E_{s}A_{AB}} + \frac{PL}{E_{b}A_{BC}}$$

= $\frac{0.250P}{(200 \times 10^{9})(706.86 \times 10^{-6})} + \frac{0.300P}{(105 \times 10^{9})(1.9635 \times 10^{-3})}$
= $3.2235 \times 10^{-9}P$

For zero net deflection, $\delta_P = \delta_T$

$$3.2235 \times 10^{-9} P = 459.75 \times 10^{-6}$$

 $P = 142.62 \times 10^{3} N$ $P = 142.6 \text{ kN} \blacktriangleleft$

Example:

A steel railroad track ($E_s = 200 \text{ GPa}$, $\alpha_s = 11.7 \times 10^{-6} / ^{\circ}\text{C}$) was laid out at a temperature of 6°C. Determine the normal stress in the rails when the temperature reaches 48°C, assuming that the rails (*a*) are welded to form a continuous track, (*b*) are 10 m long with 3-mm gaps between them.

m

SOLUTION

(a)
$$\delta_T = \alpha(\Delta T)L = (11.7 \times 10^{-6})(48 - 6)(10) = 4.914 \times 10^{-3}$$

 $\delta_P = \frac{PL}{AE} = \frac{L\sigma}{E} = \frac{(10)\sigma}{200 \times 10^9} = 50 \times 10^{-12} \sigma$
 $\delta = \delta_T + \delta_P = 4.914 \times 10^{-3} + 50 \times 10^{-12} \sigma = 0$
 $\sigma = -98.3 \times 10^6 \text{ Pa}$
(b) $\delta = \delta_T + \delta_P = 4.914 \times 10^{-3} + 50 \times 10^{-12} \sigma = 3 \times 10^{-3}$
 $\sigma = \frac{3 \times 10^{-3} - 4.914 \times 10^{-3}}{50 \times 10^{-12}}$
 $= -38.3 \times 10^6 \text{ Pa}$