Ministry of higher education and scientific research

AL-Mustaqbal University college
Department of medical physics

Stage one

General chemistry (practical)

Lecture 2

Methods of Expressing Concentration of Solutions

By

MSc. Issa farahan
MSc. Doaa Nassr

MSc. Elham Faisal
MSc. wafaa Ghalib

CONCENTRATION

The amount of solute present in the given quantity of solvent or solution.

METHODS TO EXPRESS CONCENTRATION:

i. Mass percentage: Mass of solute per 100 g of solution. Mass \% = (mass of solute / total mass of solution) X 100
ii. Volume percentage: volume of solute per 100 ml of solution. Volume $\%=($ volume of solute/ total volume of solution) $X 100$
iii. Mass by volume percentage (w/V): Another unit which is commonly used in medicine and pharmacy is mass by volume percentage. It is the mass of solute dissolved in 100 mL of the solution.
Mass by Volume \% = (mass of solute/ total volume of solution) X 100
iv. Parts per million: parts of a component per million parts of the solution.
Parts per million $=$ (Number of parts of the component /Total number of parts of all components of the solution) $\times 106$
v. Mole fraction(\mathbf{x}): The mole fraction, χ, of a component in a solution is the ratio of the number of moles of that component to the total number of moles of all components in the solution.
To calculate mole fraction, we need to know: The number of moles of each component present in the solution.
The mole fraction of $\mathrm{A}, \chi \mathrm{A}$, in a solution consisting of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ is calculated using the equation:

$$
X_{A}=\frac{\text { moles of } A}{\text { moles of } A+\text { moles of } B+\text { moles of } C+\cdots}
$$

To calculate the mole fraction of $\mathrm{B}, X_{\mathrm{B}}$, use:

$$
X_{\mathrm{B}}=\frac{\text { moles of } \mathrm{B}}{\text { moles of } \mathrm{A}+\text { moles of } \mathrm{B}+\text { moles of } \mathrm{C}+\cdots}
$$

vi. Molarity(M): No. of moles of solute dissolved in one litre of solution.

Molarity $(\mathbf{M})=$ moles of solute/ vol. of solution in litre SHORT FORM: MOLAR

vii. molality (\mathbf{m}) : No. of moles of solute per kg of the solvent. molality $(\mathrm{m})=$ moles of solute/mass of solvent in kg SHORT FORM: MOLAL

HOW TO PREPARE SOLUTIONS IN LABORATORY

What is standard solution?
(A solution whose concentration is known)

```
For example to prepare 1M Na OH solution...m
```

 First we have to calculate the amount of solute required to prepare 1 M NaOH standard solution
 \(\mathrm{M}=\mathrm{n} / \mathrm{V}(\mathrm{in} \mathrm{L})\)
 \(\mathrm{n}=\mathrm{MxV}\)
 \(=1 \times 1(M=1, V=1 \mathrm{~L})\)
 \(\mathrm{n}=1\)
 Mass of NaOH / Molar mass of \(\mathrm{NaOH}=1\)
 Mass of \(\mathrm{NaOH}=1 \times\) Molar mass of NaOH
 \(=1 \times 40(\) molar mass of \(\mathrm{NaOH}=40 \mathrm{~g} / \mathrm{mol})\)
 \(=40 \mathrm{~g}\)
 Hence we need 40 g NaOH to prepare IM standard solution

Dilutions

Whenever you need to go from a more concentrated solution ["stock"] to a less concentrated one, you add solvent [usually water] to "dilute" the solution.
No matter what the units of concentration are, you can always use this one formula.
n . of moles $_{1}=\mathrm{n}$. of moles 2

$$
\mathrm{n} 1=\mathrm{n} 2
$$

$\mathbf{C 1} \mathrm{V} 1=\mathbf{C} 2 \mathrm{~V} 2$

[Concentration of the stock] x [Volume of the stock] $=$ [Concentration of the final solution] x Volume of the final solution]

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
& \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
& \mathrm{ppm}_{1} \mathrm{~V}_{1}=\mathrm{ppm}_{2} \mathrm{~V}_{2}
\end{aligned}
$$

Q_{1} / What is the volume of $0.2 \mathrm{~mol} / \mathrm{L}$ of NaOH that it required to dilute it to $0.05 \mathrm{~mol} / \mathrm{L}$ in 100 ml ?

$\mathbf{N} 1 \mathbf{V 1}=\mathbf{N} 2 \mathbf{V} 2$

$0.2 \times \mathrm{V} 1=0.05 \times 100 \quad \mathrm{~V} 1=25 \mathrm{ml}$ complete to 100 ml
$\mathrm{Q}_{2} / \mathrm{A} 40.0 \mathrm{~mL}$ volume of $1.80 \mathrm{M} \mathrm{Fe}(\mathrm{NO} 3) 3$ is mixed with 21.5 mL of $0.808 \mathrm{M} \mathrm{Fe}(\mathrm{NO} 3) 3$ solution Calculate the molar concentration of the final solution.
Sol/
n. Of moles $=\mathrm{M}^{*} \mathrm{~V}(\mathrm{~L})=1.8 * 0.04=0.072$ moles (for solution 1)
n. of moles $=\mathrm{M} * \mathrm{~V}(\mathrm{~L})=0.808 * 0.0215=0.0173$ moles (for solution 2) n. of moles for final solution $=\mathrm{n} 1+\mathrm{n} 2=0.072+0.0173=0.0893$ moles $\mathrm{M}=\mathrm{n} / \mathrm{V}(\mathrm{L})$ $\mathrm{M}=0.0893 / 0.0615=1.45 \mathrm{~mol} / \mathrm{L}$
Other solution /
M1V1 + M2V2 $=$ M3V3 (1.80) (40.0) $+(0.808)(21.5)=(\mathrm{M} 3)(40.0+21.5$ 1.45 M

Then are you ready to answer these questions

1. A 1.88 M solution of NaCl has an initial volume of 34.5 mL . What is the final concentration of the solution if it is diluted to 134 mL ?
2. A 0.664 M solution of NaCl has an initial volume of 2.55 L . What is the final concentration of the solution if it is diluted to 3.88 L ?
3. How much water must be added to 1.55 L of $1.65 \mathrm{M} \mathrm{Sc}(\mathrm{NO} 3) 3(\mathrm{aq})$ to reduce its concentration to 1.00 M ?

Reagents Concentration Calculation

 Normality and Molarity:| | Specific Gravity (g/l) x Percentage (\%) $\times 1000$ |
| :---: | :---: |
| Normality | Equivalent Weight (g/eq) |
| Molarity | Specific Gravity (g/l) x Percentage (\%) x 1000 |
| | Molecular Weight (g/mol) |

