Couples

The moment produced by two equal, opposite, and noncollinear forces is called a couple. Couples have certain unique properties and have important applications in mechanics. Consider the action of two equal and opposite forces \mathbf{F} and - \mathbf{F} a distance d apart, as shown in Figure. These two force s cannot be combined into a single force because their sum in every direction is zero. Their on ly effect is to produce a tendency of rotation. The combined moment of the two forces about an axis normal to their plane and passing through any point such as a in their plane is the couple M . This couple has a magnitude

$\mathrm{M}=\mathrm{F}(\mathrm{a}+\mathrm{d})-\mathrm{Fa}$
Or
$\mathrm{M}=\mathrm{Fd}$

Equivalent Couples

Changing the values of \mathbf{F} and \mathbf{d} does not change a give n couple as long as the product $\mathbf{F d}$ remains the same. Likewise, a couple is not affected if the forces act in a different but parallel plan e. Figure shows four different configurations of the same couple M. In each of the four cases, the couples are equivalent and are described by the same free vector which represents the identical tendencies to rotate the bodies.

Force-Couple Systems

The replacement of a force by a force and a couple is illustrated in Figure, where the given force F acting at point A is replaced by an equal force F at some point B and the counterclockwise couple $\mathrm{M}=\mathrm{Fd}$.

Problem 1

The rigid structural member is subjected to a couple consisting of the two $100-\mathrm{N}$ forces. Replace this couple by an equivalent couple consisting of the two forces P and -P , each of which has a magnitude of 400 N . Determine the proper angle θ.

Dimensions in millimeters

Solution
$\mathrm{M}=\mathrm{Fd}$
$\mathrm{M}=100(0.1)=10 \mathrm{~N} \cdot \mathrm{~m}$
The forces P and - P produce a counterclockwise couple
$\mathrm{M}=400(0.040) \cos \theta$
$10=400(0.040) \cos \theta$
$\theta=\cos ^{-1} \frac{10}{16}=51.3$

Problem 2

Replace the horizontal $80 \cdot \mathrm{lb}$ force acting on the lever by an equivalent system consisting of n force at O and a couple.

Solution

We apply two equal and opposite $80 \cdot \mathrm{lb}$ forces at O and identify the counterclockwise couple
$\mathrm{M}=\mathrm{Fd}$
$M=80(9 \sin 60)=624 \mathrm{lb}-\mathrm{in}$.

Problem 3

The indicated force- couple system is applied to a small shaft at the center of the rectangular plate. Replace this system by a single force and specify the coordinate of the point on the y-axis through which the line of action of this resultant force passes.

Solution

ค $\quad M=F d: 375=5000 \mathrm{~d}$

$$
d=0.075 \mathrm{~m}
$$

$$
\therefore y=-75 \mathrm{~mm}
$$

Problem 4

The top view of a revolving entrance door is shown. Two persons simultaneously approach the door and exert forces of equal magnitudes as shown. If the resulting moment about the door pivot axis at O is $25 \mathrm{~N} . \mathrm{m}$, determine the force magnitude F .

Solution

$f+M_{0}=\Sigma F d$

$$
\begin{aligned}
25 & =2 F\left(\cos 15^{\circ}\right)(0.8) \\
F & =16.18 \mathrm{~N}
\end{aligned}
$$

