LECTURE (1)

DIFFERENTIAL EQUATIONS (PART ONE)

A differential equation is an equation that involves one or more derivatives. They are classified by:

1- Type (ordinary, partial).
2- Order (the highest order derivative that occurs in the equation). 3- Degree (the highest power of the highest order derivative).

If y is a function of x, where y is called the dependent variable and x is called the independent variable, thus, differential equation is a relation between x and y which includes at least one derivative of y with respect to x .

If the differential equation involves only a single independent variable , this derivative is called ORDINARY DERIVATIVE \& the equation is called ORDINARY DIFFERENTIAL EQUATION (ODE).

If the differential equation involves two or more independent variables, this derivative is called PARTIAL DERIVATIVE \& the equation is called PARTIAL DIFFERENTIAL EQUATION (PDE).

$$
\begin{gathered}
\square \mathbf{y}=\mathbf{f}(\mathbf{x , t}) \\
\frac{\partial 2 \mathrm{y}}{\partial \mathrm{t}^{2}}=\mathrm{c}^{2}\left(\frac{\partial 2 \mathrm{y}}{\partial \mathrm{x}^{2}}\right) \quad\left(2^{\text {nd }} \text { order } ; 1^{\text {st }} \text { degree }\right) \\
\square \mathbf{y}=\mathbf{f}(\mathbf{x}) \\
\frac{d y}{d x}=3 \mathrm{x}+5 \quad\left(1^{\text {st }} \text { order } ; 1^{\text {st }} \text { degree }\right) \\
\left(\frac{d 3 y}{d x^{3}}\right)^{2}+\left(\frac{d 2 y}{d x^{2}}\right)^{4}=0 \quad\left(3^{\text {rd }} \text { order } ; 2^{\text {nd }} \text { degree }\right) \\
5 \frac{d 3 y}{d x^{3}}+\cos \frac{d 2 y}{d x^{2}}+2 \mathrm{xy}=0 \quad\left(3^{\text {rd }} \text { order } ; 1^{\text {st }} \text { degree }\right)
\end{gathered}
$$

SOLUTION OF DIFFERENTIAL EQUATIONS:

1- GENERAL SOLUTION.
2- PARTICULAR SOLUTION.
$\mathrm{y}=\mathrm{x}+\mathrm{c}$ (general solution)
If $y=2 \& x=1$, then
$2=1+c ; c=1$
$\mathrm{y}=\mathrm{x}+1 \quad$ (particular solution)
The differential equation may be linear or non-linear depending on the presence of the dependent variable y and its derivatives in one term of the equation.
$\frac{d 2 y}{d x^{2}}+4 \mathbf{x} \frac{d y}{d x}+2 \mathbf{y}=0 \quad$ (linear equation)
$\frac{d 2 y}{d x^{2}}+4 \mathbf{y} \frac{d y}{d x}+2 \mathbf{y}=0 \quad$ (non-linear equation)
$\frac{d 2 y}{d x^{2}}+\sin y=0$ (non- linear equation since it contains $\sin \boldsymbol{y}$ which is non-linear

The complexity of solving differential equations increases with the order.

1) SOLUTION OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS:

1. Variable Separable Equation.
2. Homogenous Equation.
3. Exact Equation.
4. Linear Equation.
5. Bernoulli's Equation.

1. Variable Separable Equation.

A first order Ordinary Differential Equation has the form:

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=0
$$

In theory, at least, the method of algebra can be used to write it in the form:

$$
\mathrm{y}^{\prime}=\mathrm{G}(\mathrm{x}, \mathrm{y}) .
$$

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ can be factored to give:

$$
G(x, y)=M x . N y,
$$

then the equation is called separable.
To solve the separable equation $y^{\prime}=M x . N y$, we rewrite it in the form

$$
f(y) y^{`}=g(x) .
$$

Integrating both sides gives:

$$
\begin{gathered}
\int f(y) y^{\prime} d x=\int g(x) d x \\
\int f(y) d y=\frac{d y}{d x} d x
\end{gathered}
$$

Ex (1) Solve the equation $y \frac{d y}{d x}+x y^{2}=x$.

Solution:

$$
\begin{gathered}
\mathrm{y} \frac{d y}{d x}+\mathrm{x} \mathrm{y}^{2}-\mathrm{x}=0 \\
\mathrm{y} \frac{d y}{d x}+\left(\mathrm{y}^{2}-1\right) \mathrm{x}=0 \\
\left(\frac{\mathrm{y}}{\mathrm{y}^{2}-1}\right) \frac{d y}{d x}+\left(\frac{\mathrm{y}^{2}-1}{\mathrm{y}^{2}-1}\right) \mathrm{x}=0 \\
\left(\frac{\mathrm{y}}{\mathrm{y}^{2}-1}\right) d y+\mathrm{x} \cdot d x=0 \\
\left.\int \frac{\mathrm{y}}{\mathrm{y}^{2}-1}\right) d y+\int \mathrm{x} \cdot d x=0 \\
\frac{1}{2} \ln \left(\mathrm{y}^{2}-1\right)+\frac{\mathrm{x}^{2}}{2}+\mathrm{c}=0
\end{gathered}
$$

Ex (2) Solve the equation $\frac{d y}{d x}=\left(1+y^{2}\right) e^{x}$.
Solution:

$$
\begin{gathered}
\frac{d y}{1+y^{2}}=e^{x} d x \\
e^{x} d x-\frac{d y}{1+y^{2}}=0 \\
\int e^{x} d x-\int \frac{d y}{1+y^{2}}=0 \\
e^{x}-\tan ^{-1} y=c \\
y=\tan \left(e^{x}-c\right)
\end{gathered}
$$

Ex (3) Solve the equation $\frac{d y}{d x}=\cos (x+y)$.

Solution:

Let $\mathrm{u}=\mathrm{x}+\mathrm{y}$

$$
\frac{d u}{d x}=1+\frac{d y}{d x} \quad \rightarrow \quad \frac{d y}{d x}=\frac{d u}{d x}-1
$$

Sub. for $\frac{d y}{d x}$ in the main equation

$$
\begin{gathered}
\frac{d u}{d x}-1=\cos (u) \\
\frac{d u}{d x}=\cos (u)+1 \rightarrow d x=\frac{d u}{1+\cos (u)} \\
\int \frac{(1-\cos u)}{(1-\cos u)(1+\cos u)} d u=\int d x \\
\int \frac{(1-\cos u)}{\left(1-\cos ^{2} u\right)} d u=\int d x \\
\int \frac{1}{\left(\sin ^{2} u\right)} d u-\int \frac{\cos u}{\sin ^{2} u} d u=\int d x \\
\int \csc ^{2} u \cdot d u-\int \cot u \cdot \csc u d u=\int d x \\
\rightarrow-\cot (x+y)+\csc (x+y)= \\
x+c
\end{gathered}
$$

2- Homogenous Equation:

$$
A(x, y) d x+B(x, y) d y=0
$$

where the functions $\mathrm{A}(\mathrm{x}, \mathrm{y}) \& \mathrm{~B}(\mathrm{x}, \mathrm{y})$ are of the same degree.
The equation can be put in the form:

$$
\begin{equation*}
\frac{d y}{d x}=\mathrm{F}\left(\frac{y}{x}\right) \tag{1}
\end{equation*}
$$

Such equation is called homogenous

$$
\begin{array}{r}
\text { Let } \mathrm{v}=\frac{y}{x} \quad \ldots \ldots \ldots \ldots \ldots \\
\frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x} \ldots \ldots \ldots \tag{3}\\
F(v)=\mathrm{v}+x \frac{d v}{d x} \\
\frac{d x}{x}+\frac{d v}{\mathrm{v}-F(\mathrm{v})}=0
\end{array}
$$

Examples:

1) $y \cdot d x+x \cdot d y=0 \quad$ (homogenous/ same degree)
2) $y^{2} \cdot d x+x y \cdot d y=0 \quad$ (homogenous/ same degree)
3) $y \cdot d x+d y=0$ (not homogenous)
4) $(y+1) d x+d y=0$ (not homogenous)
5) $\left(y+\sin \frac{y}{x}\right) d x+x . d y=0 \quad$ (not homogenous)
6) $\left(\mathrm{y}+x \cdot \sin \frac{y}{x}\right) \mathrm{dx}+\mathrm{x} \cdot \mathrm{dy}=0$ (homogenous/ same degree)
7) $(x+y) d y+x . d x=0$ (homogenous/same degree)
8) $\mathrm{x} . \mathrm{dy}+$ siny $. \mathrm{dx}=0 \quad$ (not homogenous)

EX (1) Solve the equation $(x+y) . d y-(x-y) . d x=0$.
Solution:
the equation is homogenous; $\mathrm{v}=\frac{y}{x}$

$$
\begin{gathered}
\mathrm{F}(\mathrm{v})=\frac{d y}{d x}=\frac{x-y}{x+y}=\frac{1-\frac{y}{x}}{1+\frac{y}{x}}=\frac{1-v}{1+v} \\
\frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x} ; \text { (homogenous) } \rightarrow \rightarrow \frac{1-v}{1+v}=\mathrm{v}+x \frac{d v}{d x}
\end{gathered}
$$

$$
\begin{gathered}
\frac{d x}{x}-\frac{d v}{\frac{1-v}{1+v}-v}=0 \quad \rightarrow \rightarrow \quad \frac{d x}{x}-\frac{d v}{\frac{1-v-v-v^{2}}{1+v}}=0 \\
\int \frac{d x}{x}-\int \frac{(1+v) d v}{1-r v-v^{2}}=0 \rightarrow \quad \ln x+\frac{1}{2} \ln \left(1-r v-v^{2}\right)=\ln c \\
\ln x^{2}+\ln \left[1-\frac{2 y}{x}-\left(\frac{y}{x}\right)^{2}\right]=\ln c^{`} \\
x^{2}\left[1-\frac{2 y}{x}-\left(\frac{y}{x}\right)^{2}\right]=c^{\prime} \\
x^{2}-2 y x-y^{2}=c^{\prime}
\end{gathered}
$$

EX (2) Solve the equation $\left(x^{2}-y^{2}\right) . d x-2 x y . d y=0$.
Solution:
the equation is homogenous $; \mathrm{v}=\frac{y}{x} ; \frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x}$

$$
\begin{gathered}
\mathrm{F}(\mathrm{v})=\frac{d y}{d x}=-\left(\frac{x^{2}-y^{2}}{2 \mathrm{xy}}\right)=\left[\frac{1+\left(\frac{Y}{X}\right)^{2}}{2\left(\frac{Y}{X}\right)}\right] \\
\frac{d x}{x}+\frac{d v}{v+\frac{1+v^{2}}{2 v}}=0 \quad \rightarrow \rightarrow \rightarrow \quad \frac{d x}{x}+\frac{d v}{\frac{2 v^{2}+1+v^{2}}{2 v}}=0 \\
\frac{d x}{x}+\frac{2 v d v}{1+3 v^{2}}=0 \quad \int \frac{d x}{x}+\int \frac{2 v d v}{1+3 v^{2}}=0 \\
\ln x+\frac{1}{3} \ln \left(1+3 v^{2}\right)=\ln c \\
\ln x^{3}+\ln \left(1+3 v^{2}\right)=\ln c^{\prime} \\
x^{3}\left(1+3 v^{2}\right)=c^{\prime} \\
x^{3}\left(1+3 \frac{y^{2}}{x^{2}}\right)=c^{\prime} \\
x\left(x^{2}+3 y^{2}\right)=c^{\prime}
\end{gathered}
$$

LECTURE (2)

DIFFERENTIAL EQUATIONS
 PART TWO

3- Exact Equation

$$
A(x, y) \cdot d x+B(x, y) . d y=0
$$

on the condition that:

$$
\frac{\partial A(x, y)}{\partial y}=\frac{\partial B(x, y)}{\partial x}
$$

Method of solution:
First we assume the solution is $\emptyset(x, y)=$ constant

$$
\begin{gathered}
\mathrm{A}=\frac{d \emptyset}{d x} \& \mathrm{~B}=\frac{d \emptyset}{d y} \\
\int d \emptyset=\int A d x \\
\emptyset=\int A d x \\
\frac{d \emptyset}{d y}=\frac{d}{d y} \int A d x=\mathrm{B} \\
\mathrm{~B}=\frac{d \emptyset}{d y}=\frac{d}{d y} \int A d x
\end{gathered}
$$

EX (1) Solve the equation: $\left(x^{3}-3 x^{2} y+2 x y^{2}\right) . \mathrm{dx}-\left(x^{3}-2 x^{2} y+y^{3}\right) \mathrm{dy}=0$
Solution:
First we must check if the equation is exact.

$$
\frac{\partial A(x, y)}{\partial y}=\frac{\partial B(x, y)}{\partial x}
$$

$$
\begin{gathered}
\mathrm{A}=x^{3}-3 x^{2} y+2 x y^{2} ; \mathrm{B}=-\left(x^{3}-2 x^{2} y+y^{3}\right) \\
\frac{\partial A}{\partial y}(\text { with respect to } \mathrm{x})=-3 x^{2}+4 \mathrm{xy} \\
\frac{\partial B}{\partial x}(\text { with respect to } \mathrm{y})=-3 x^{2}+4 \mathrm{xy}
\end{gathered}
$$

Thus the equation is exact

$$
\begin{gather*}
\emptyset=\int A d x=\int\left(x^{3}-3 x^{2} y+2 x y^{2}\right) \cdot \mathrm{dx} \\
\emptyset=\frac{x^{4}}{4}-x^{3} y+x^{2} y^{2}+\mathrm{Cy} \ldots \ldots \ldots \ldots \tag{1}
\end{gather*}
$$

where \mathbf{C} is constant that may be a function of \mathbf{y}.

$$
\begin{gather*}
\frac{d \emptyset}{d y}=-x^{3}+2 x^{2} y+\frac{\partial c}{\partial y} \quad ; \mathrm{B}=\frac{d \emptyset}{d y} \\
-\left(x^{3}-2 x^{2} y+y^{3}\right)=-x^{3}+2 x^{2} y+\frac{\partial c}{\partial y} \rightarrow \longrightarrow \rightarrow \frac{\partial c}{\partial y}=-y^{3} \\
\mathrm{Cy}=-\frac{y^{4}}{4}-\mathrm{D} \ldots \ldots \ldots \ldots \ldots .(2) \tag{2}
\end{gather*}
$$

Sub. Cy in the main equation (1);

$$
\emptyset=\frac{x^{4}}{4}-x^{3} y+x^{2} y^{2}-\frac{y^{4}}{4}-\mathrm{D}
$$

EX (2) Solve the equation: $\sin x . d y+y \cos x \cdot d x=0$
Solution:
First we must check if the equation is exact.

$$
\begin{gathered}
\frac{\partial \boldsymbol{A}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{y}}=\frac{\partial \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{x}} \\
\mathrm{A}=y \cos x ; \mathrm{B}=\sin x \\
\frac{\partial A}{\partial y}(\text { with respect to } \mathrm{x})=\cos x \\
\frac{\partial B}{\partial x}(\text { with respect to } \mathrm{y})=\cos x
\end{gathered}
$$

Thus the equation is exact

$$
\begin{array}{r}
\emptyset=\int A d x=\int y \cos x . \mathrm{dx} \\
\emptyset=y \sin x+\mathrm{Cy} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}
\end{array}
$$

$$
\begin{gather*}
\frac{d \emptyset}{d y}=\sin x+\frac{\partial c}{\partial y} \\
\mathrm{~B}=\frac{d \emptyset}{d y} ; \mathrm{B}=\sin x \\
\text { thus, } \sin x=\sin x+\frac{\partial c}{\partial y} \rightarrow \rightarrow \rightarrow \quad \frac{\partial c}{\partial y}=0 \\
\mathrm{Cy}=\mathrm{D} \quad \ldots \ldots \ldots \ldots \ldots \text { (2) } \tag{2}\\
\text { sub. in }(1) ; \quad \emptyset=y \sin x+\mathrm{D}
\end{gather*}
$$

4- Linear Equation

This type of equation has the general form:

$$
\begin{equation*}
\frac{d y}{d x}+P_{x} \cdot \mathrm{y}=\mathrm{Q}_{x} \tag{1}
\end{equation*}
$$

and solved by an integration factor (R), given by:

$$
\begin{equation*}
\mathrm{R}=e^{\int P_{x} \cdot \mathrm{dx}} \tag{2}
\end{equation*}
$$

and the solution is:

$$
\begin{equation*}
\text { R.y }=\int \text { R. } Q_{x} \cdot d x+C \tag{3}
\end{equation*}
$$

EX (1) Solve the equation: $x \cdot \frac{d y}{d x}-\mathrm{y}=x^{3}$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}-\frac{1}{x} \mathrm{y}=x^{2} \\
Q_{x}=x^{2} ; P_{x}=-\frac{1}{x} \\
\mathrm{R}=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{\ln \frac{1}{x}}=\frac{1}{x} \\
\mathrm{R} \cdot y=\int R \cdot Q_{x} \cdot d x+\mathrm{C} \\
\frac{1}{x} \mathrm{y}=\int \frac{1}{x} x^{2} \cdot d x+\mathrm{C}=\int x \cdot d x+\mathrm{C} \\
\frac{1}{x} \mathrm{y}=\frac{x^{2}}{2}+\mathrm{C} \rightarrow \rightarrow \rightarrow \quad \mathrm{y}=\frac{x^{3}}{3}+x \mathrm{C}
\end{gathered}
$$

EX (2) Solve the equation: $x \cdot \frac{d y}{d x}+3 y=\frac{\sin x}{x^{2}}$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}+\frac{3}{x} \mathrm{y}=\frac{\sin x}{x^{3}} \rightarrow Q_{x}=\frac{\sin x}{x^{3}} ; P_{x}=\frac{3}{x} \\
\mathrm{R}=e^{\int \frac{3}{x} d x}=e^{3 \ln x}=e^{\ln x^{3}}=x^{3} \\
\mathrm{R} \cdot y=\int R \cdot Q_{x} \cdot d x+\mathrm{C} \\
x^{3} \cdot \mathrm{y}=\int x^{3} \cdot \frac{\sin x}{x^{3}} d x+\mathrm{C}=\int \sin x \cdot d x+\mathrm{C} \\
x^{3} \cdot \mathrm{y}=-\cos x+\mathrm{C} \\
\mathrm{y}=\frac{-\cos x}{x^{3}}+\frac{c}{x^{3}}
\end{gathered}
$$

5- Bernoulli's Equation

This type of equations has a general form:

$$
\frac{d y}{d x}+P_{x} \cdot \mathrm{y}=\mathrm{Q}_{x} \mathrm{y}^{\mathrm{n}} ;[\mathrm{n}>1]
$$

The solution starts by putting the equation as:

$$
\begin{equation*}
y^{-n}\left(\frac{d y}{d x}\right)+P_{x} \cdot y^{1-n}=\mathrm{Q}_{x} \tag{1}
\end{equation*}
$$

assume; $\quad \mathbf{y}^{\mathbf{1 - n}}=\mathrm{w}$
Differentiate with respect to \boldsymbol{x}

$$
\begin{aligned}
& (1-\mathrm{n}) \mathrm{y}^{-\mathrm{n}}\left(\frac{d y}{d x}\right)=\frac{d w}{d x} \\
& \boldsymbol{y}^{-\boldsymbol{n}}\left(\frac{d \boldsymbol{y}}{\boldsymbol{d} x}\right)=\frac{1}{(1-n)} \frac{d w}{d x}
\end{aligned}
$$

sub. in (1) ;

$$
\frac{1}{(1-n)} \frac{d w}{d x}+P_{x} \cdot \mathrm{~W}=\mathrm{Q}_{x}
$$

$$
\frac{d w}{d x}+(1-\mathrm{n}) P_{x} \cdot \mathrm{w}=(1-\mathrm{n}) \mathrm{Q}_{x} \ldots \ldots \ldots \ldots \ldots . \text { (2) } \quad \text { (Linear Equation) }
$$

EX (1) Solve the equation: $y\left(6 y^{2}-x-1\right) d x+2 x . d y=0$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}+\frac{y\left(6 y^{2}-x-1\right)}{2 x}=0 \\
\frac{d y}{d x}+\frac{-(x+1)}{2 x} y+\frac{6 y^{3}}{2 x}=0 \\
\frac{d y}{d x}-\frac{x+1}{2 x} y+\frac{3}{x} y^{3}=0 \\
\frac{d y}{d x}-\frac{x+1}{2 x} y=-\frac{3}{x} y^{3} \\
y^{-3} \frac{d y}{d x}-\frac{x+1}{2 x} y^{-2}=-\frac{3}{x} \\
\frac{d w}{d x}+(\mathbf{1}-\mathbf{n}) \boldsymbol{P}_{x} \cdot \boldsymbol{w}=(1-\mathrm{n}) \mathrm{Q}_{x} \text { (main equation) } \\
\mathbf{w}=\boldsymbol{y}^{-2} \\
\frac{d w}{d x}=-\mathbf{2} \boldsymbol{y}^{-3} \frac{d y}{d x}
\end{gathered}
$$

Sub. in the main equation:

$$
\begin{gathered}
-\frac{1}{2} \frac{d w}{d x}-\frac{x+1}{2 x} w=-\frac{3}{x} \\
\frac{d w}{d x}+\frac{x+1}{x} w=\frac{6}{x} \quad \text { Linear Equation }
\end{gathered}
$$

Solving as linear equation;

$$
\begin{gathered}
\mathrm{R}=e^{\int P_{x} \cdot \mathrm{dx}}=e^{\int \frac{x+1}{x} \cdot \mathrm{dx}}=e^{\int \mathrm{dx}+\int \frac{d x}{x}} \\
=e^{x+\ln x}=e^{x} \cdot e^{\ln x}=x e^{x} \\
\mathrm{R}=x e^{x} \\
\mathrm{R} \cdot y=\int R \cdot Q_{x} \cdot d x+\mathrm{C} \\
\mathrm{w}=y^{-2} ; Q_{x}=\frac{6}{x} \\
x e^{x} \cdot w=\int x e^{x} \cdot \frac{6}{x} \cdot d x+\mathrm{C}
\end{gathered}
$$

$$
\begin{gathered}
x e^{x} \cdot w=6 \int e^{x} \cdot d x+\mathrm{C} \\
x e^{x} \cdot w=6 e^{x}+\mathrm{C} \\
x e^{x} \cdot y^{-2}=6 e^{x}+\mathrm{C}
\end{gathered}
$$

EX (2) Solve the equation: $6 y^{2} d x-x\left(2 x^{3}+y\right) d y=0$
Solution:

$$
\begin{aligned}
& 6 y^{2} d x=x\left(2 x^{3}+y\right) d y \\
& \frac{d x}{d y}=\frac{x\left(2 x^{3}+y\right)}{6 y^{2}}=\frac{\left(2 x^{4}+x y\right)}{6 y^{2}}=\frac{2 x^{4}}{6 y^{2}}+\frac{x y}{6 y^{2}} \\
& \frac{d x}{d y}-\frac{x}{6 y}=\frac{x^{4}}{3 y^{2}} \quad \text { (Bernoulli's Equation) } \\
& x^{-4} \cdot \frac{d x}{d y}-\frac{x^{-3}}{6 y}=\frac{1}{3 y^{2}} \\
& \mathrm{~W}=x^{-3} \rightarrow \rightarrow \frac{d w}{d y}=-3 x^{-4} \frac{d x}{d y} \\
& \frac{d x}{d y}=-\frac{1}{3 x^{-4}} \frac{d w}{d y} \\
& \text { sub. in (1) } \quad-\frac{1}{3} \frac{d w}{d y}-\frac{w}{6 y}=\frac{1}{3 y^{2}} \\
& \frac{d w}{d y}-\frac{3 w}{6 y}=\frac{-3}{3 y^{2}} \\
& \frac{d w}{d y}+\frac{w}{2 y}=\frac{-1}{y^{2}} \quad \text { (Linear Equation) } \\
& \mathrm{R}=e^{\int \frac{1}{2 y} \mathrm{dx}}=e^{\frac{1}{2} \ln y}=y^{\frac{1}{2}} \\
& w=x^{-3} ; Q_{y}=\frac{-1}{y^{2}} \\
& y^{\frac{1}{2}} \cdot w=\int y^{\frac{1}{2}} \cdot \frac{-1}{y^{2}} \cdot d y+\mathrm{C}=-\frac{y^{-\frac{1}{2}}}{-\frac{1}{2}}+\mathrm{C}=2 y^{\frac{-1}{2}}+\mathrm{C} \\
& y^{\frac{1}{2}} \cdot x^{-3}=2 y^{\frac{-1}{2}}+\mathrm{C}
\end{aligned}
$$

