

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College

Department of Chemical Engineering and petroleum Industrials

Mathematics II
$2^{\text {nd }}$ Stage
Lecturer: Rusul Ahmed Hashim

2023-2024

Polar Form

()

or

a- Finding Limits of Integration in polar form

The procedure for finding limits of integration in rectangular coordinates also works for polar coordinates. To evaluate $\iint_{R} f(r, \theta) d A$ over a region R in polar coordinates, integrating first with respect to r and then with respect to , take the following steps.

1- Sketch. Sketch the region and label the bounding curves.
2- Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the direction of increasing r. Mark the r-values where L enters and leaves R. These are the r-limits of integration. They usually depend on the angle u that L makes with the positive x-axis.

3- Find the -limits of integration. Find the smallest and largest -values that bound R. These are the -limits of integration (see figure 6). The polar iterated integral is

$$
\iint_{R} f(r, \theta) d A=\int_{\theta=\pi / 4}^{\theta=\pi / 2} \int_{r=\sqrt{2} \csc \theta}^{r=2} f(r, \theta) r d r d \theta
$$

$\int_{-\pi / 2}^{\pi / 2} \int_{1}^{1+\cos \theta} f(r, \theta) r d r d \theta$.

Figure 2

b- Change of variables

Let () () then the
formula for a change of variables in double integrals from x, y to u, v is
$\iint()$
$\iint($
() ()) $\vdash^{(\quad)}$
that is, the integrand is expressed in terms of u and v, and $d x$, dy is replaced by $d u d v$ times
the absolute value of the Jacobian.

For double integral transformation from the cartesian coordinates to polar coordinates ordinates as follows:

Since

using the Jacobian matrix, we find that

Then

$$
\iint(\quad) \quad \int \quad \int(\quad)
$$

c- Triple integral

If $f(x, y, z)$ is a function defined on a closed bounded region D in space, such as the region occupied by a solid ball or a lump of clay, then the integral of f over D may be defined in the following way.

$$
\iiint \quad 1 \quad \int_{0}^{0}
$$

d- Surface area

Let $\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a differentiable function. As we have seen, $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ defines a surface in x $y \mathrm{z}$-space. In some applications, it necessary to know the surface area of the surface above some region R in the xy -plane. See the figure.

