- Error Function.

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{u^{2}} d u
$$

$\xrightarrow[\text { elhentioror dic }]{\text { do }}$
$\operatorname{er} f_{c}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^{2}} d u \quad$ cimplementery
dr,
 ex prove erf $(x)=\frac{1}{\sqrt{\pi}} \int_{0}^{x^{2}} e^{-t} t^{-\frac{1}{2}} d t$

0 Prove: \quad of $f(\infty)=$!
Solutime

$$
\operatorname{erf}(x) \cdot \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} d u=\frac{1}{\sqrt{\pi}} \int_{0}^{\frac{2}{2}} e^{-t} \cdot t^{-\frac{1}{2}} d
$$

$$
\operatorname{erf}(\infty)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t} \cdot t^{-\frac{1}{2}} d t
$$

$\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
$[e f(x)=1$

$$
\begin{aligned}
& \text { (3) } \operatorname{erf}(0)=0 \\
& \operatorname{erf}(0)=\frac{2}{\sqrt{\pi}} \int_{0}^{0} e^{-u^{2}} d u=0 \\
& \text { (4) er } f(x)+e r f_{c}(x)=1 \quad \text { phi } \\
& e v f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-e^{2}} \cdot d u \operatorname{erfc}(x)=2^{2} \int_{\infty}^{\infty} e^{-u} d u \\
& \underset{\infty}{\operatorname{erf} f(x)+\operatorname{erf}(x)}=\frac{2}{\sqrt{\pi}}\left[\int_{0}^{x} e^{-x^{2}} d u+\int_{x}^{\infty} e^{-u} \cdot d u\right]^{x} \\
& \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-u^{2}} d u=\operatorname{erf}(x)=1 \\
& \text { - o.d.... F.... } 1 \text { H }
\end{aligned}
$$

"Eros the error function is an odd fund \times Function $f(x)$ is said to be odd if $f(-x)=\frac{16}{1 /}$

$$
\begin{aligned}
& \operatorname{erf}(-x x)=-\operatorname{erf}(x) \\
& \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} d u \\
& \operatorname{erf}(-x)=\frac{2}{\sqrt{\pi}} \int_{0}^{-x} e^{-u^{2}} d u \\
& \text { Pto } \sqrt{\pi} 00 \text { e } \\
& \text { put } u=-t, \xrightarrow{d} d u=-d t
\end{aligned}
$$

(3) الخمر2

