Lecture -6-

The general procedure for use of Table 11-2 is as follows:

1. Determine the air-flow requirements and the room size.
2. Select the number, location, and type of diffuser to be used.
3. Determine the room characteristic length.
4. Select the recommended throw-to-length ratio from Table 11-2.
5. Calculate the throw.
6. Select the appropriate diffuser from catalog data such as those in Tables 11-3, 11-4, 11-5, or 11-6.
7. Make sure any other specifications are met (noise, total pressure, etc.).

Ex: The room shown in Figure (1) is part of a single-story office building located in the central United States. A perimeter air-distribution system is used. The air quantity required for the room is $\mathbf{2 5 0} \mathbf{~ c f m}$. Select diffusers for the room based on cooling.

Figure 1 Plan view of a room showing location of different types of outlets.
Solution:.
Diffusers of the type shown in Table 11-3 should be used for this application.
A diffuser should be placed under each window in the floor near the wall (Figure c) because the room has two exposed walls. This will promote mixing with the warm air entering through the window. The total air quantity is divided equally between the two diffusers $(\mathbf{2 5 0} / \mathbf{2}=\mathbf{1 2 5} \mathbf{~ c f m})$. If we assume that the room has an 8 ft ceiling and a room cooling load of $40 \mathrm{Btu} /(\mathrm{hr}-\mathrm{ft} 2)$, the room characteristic length is $\mathbf{8} \mathrm{ft}(\mathbf{1 6 / 2})$.

Table 11-2 gives a throw-to-length ratio of $\mathbf{1 . 3}$ for a straight vane diffuser. Then

$$
\frac{x 50}{L}=1.3 \rightarrow \frac{x 50}{8}=1.3 \rightarrow \underline{\boldsymbol{x 5 0}=\mathbf{1 0 . 4} \mathbf{~ f t}} \text { (throw=blow) }
$$

From Table 11-3, $\underline{\mathbf{a}} \mathbf{~} \times \mathbf{1 2} \mathbf{i n}$. diffuser with $\underline{\mathbf{1 2 5} \mathbf{~ c f m}}$ has a throw (blow), corrected for length, between

$$
x 50=13\left(\frac{3}{4}\right)=9.7 \mathrm{ft} \text { and } x 50=17\left(\frac{3}{4}\right)=12.7 \mathrm{ft}
$$

because 125 cfm lies between 111 cfm and 139 cfm .
The NC is quite acceptable and is between $\mathbf{1 2}$ and 18, uncorrected for length. The total pressure required by the diffuser is between 0.036 and 0.057 in . wg and is about

$$
\Delta P=(125 / 111)^{2} \times(0.036)=\underline{\mathbf{0 . 0 4 6}} \mathbf{i n} . \mathbf{w g}
$$

An acceptable solution is listed as follows:

Size, in.	Capacity, cfm	Throw, ft	NC	ΔP_{0}, in. wg
4×12	125	10.5	<15	0.046

The loss in total pressure for the diffuser is an important consideration. The value shown above would be acceptable for a light commercial system.

Table 11-1 Charactenistic Room Length for Several Diffusers

Diffuser Type	Characteristic Length L
High sidewall grille	Distance to wall perpendicular to jet
Circular ceiling diffuser	Distance to closet wall or intersecting air jet
Sill grille	Length of room in direction of jet flow
Ceiling slot diffuser	Distance to wall or midplane between outlets
Light troffer diffisers	Distance to midplane between outlets plus distance
from ceiling to top of occupied zone	
Perforated, louvered ceiling diffusers	Distance to wall or midplane between outlets

Source: Reprinted by permission from ASHRAE Handbook, Fundamentals Volume, 1997.

Table 11-2 Air Diffusion Performance Index (ADPI) Selection Guide

Terminal Device	Room Load. $\mathrm{Bta} / \mathrm{hr}-\mathrm{ft}^{2}$	x_{50} / L^{a} for Maximum ADPI	$\begin{aligned} & \text { Maximum } \\ & \text { ADPI } \end{aligned}$	For ADPI Greater Than	Range of x_{50} / L^{a}
High sidewall grilles	80 (252)	1.8	68	-	-
	60 (189)	1.8	72	70	1.5-2.2
	40 (126)	1.6	78	70	1.2-2.3
	20 (63)	1.5	85	80	1.0-1.9
Circular ceiling diffusers	80 (252)	0.8	76	70	0.7-1.3
	60 (189)	0.8	83	80	0.7-1.2
	40 (126)	0.8	88	80	0.5-1.5
	20 (63)	0.8	93	90	0.7-1.3
Sill grille, Straight vanes	80 (252)	1.7	61	60	1.5-1.7
	60 (189)	1.7	72	70	1.4-1.7
	40 (126)	1.3	86	80	1.2-1.8
	20 (63)	0.9	95	90	0.8-1.3
Sill grille, Spread vanes	80 (252)	0.7	94	90	0.6-1.5
	60 (189)	0.7	94	80	0.6-1.7
	40 (126)	0.7	94	-	-
	20 (63)	0.7	94	-	-
Ceiling slot diffusers (for $\left.T_{100} / L\right)^{a}$	80 (252)	0.3	85	80	$0.3-0.7$
	60 (189)	0.3	88	80	$0.3-0.8$
	40 (126)	0.3	91	80	0.3-1.1
	20 (63)	0.3	92	80	0.3-1.5
Light troffer diffusers	60 (189)	2.5	86	80	<3.8
	40 (126)	1.0	92	90	<3.0
	20 (63)	1.0	95	90	<4.5
Perforated and louvered ceiling diffusers	11-51 (35-160)	2.0	96	90	1.4-2.7
				80	1.0-3.4

${ }^{a}$ For SI units, $x_{0.25} / L$ and $T_{0.5} / L$
Source: Reprinted by permission from ASHRAE Handbook, Fundamentals Volume, 1997.

Table 11-3 Performance Data for a Typical Linear Diffiuser

Size, in	Area $\mathrm{ft}^{2} / \mathrm{ft}$	Total Pressure, in wg	Flow, cfm/ft	$\mathrm{NC}^{\text {b }}$	Throw, ${ }^{\text {a }}$ ft		
					Min.	Mid.	Max
2	0.055	0.009	22	-	1	1	1
		0.020	33	-	4	4	4
		0.036	44	12	7	7	7
		0.057	55	18	9	9	10
		0.080	66	23	11	11	12
		0.109	77	27	13	14	16
		0.143	88	31	14	16	18
		0.182	99	34	15	17	20
		0.225	110	37	17	19	21
4	0.139	0.009	56	-	3	3	3
		0.020	83	-	9	9	9
		0.036	111	12	13	13	13
		0.057	139	18	16	16	17
		0.080	167	23	20	20	21
		0.109	195	27	22	23	24
		0.143	222	31	24	25	26
		0.182	250	34	27	27	27
		0.225	278	37	30	30	30
6	0.221	0.009	88	-	5	5	5
		0.020	133	-	10	10	10
		0.036	177	13	15	15	15
		0.057	221	19	18	18	18
		0.080	265	24	23	23	23
		0.109	310	28	25	25	25
		0.143	354	32	28	28	28
		0.182	398	35	31	31	31
		0.225	442	38	32	32	32
	$\begin{aligned} & \text { Active Length } \\ & \mathrm{ft} \end{aligned}$	Multiplier Factor for Throw Value at Terminal Velocity, ff/min					
		150	100				
			0.6				
	10 or continuous	$\text { Is } \quad 1.6$	1.4				
	$\begin{aligned} & \text { Active Length, } \\ & \mathrm{ft} \end{aligned}$	$\underset{\text { NC }}{\text { NCrection }}$	Active Le ft	$\underset{\text { Corre }}{\mathrm{N}}$		-si	\cdots
	1	-10	10				
	2	-7	15	+			
	4	-4	20	$+3$			
	6	-2	25	+4			
	8	-1	30	+			

${ }^{a^{a}}$ Minimmm throw values refer to a terminal velocity of $150 \mathrm{ft} / \mathrm{min}$, middle to $100 \mathrm{ft} / \mathrm{min}$, and maximum to $50 \mathrm{ft} / \mathrm{min}$, for a 4 ft active section with a cooling temperature differential of 20 F . The multiplier factors listed at the bottom are applicable for other lengths.
${ }^{5}$ Based on a room absorption of 80 dB referred to $10^{-12} \mathrm{~W}$, and a 10 ft active section. Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

Table 11-4 Performance Data for a Typical Round Ceiling Diffuser

Size, in.	Neck Velocity, ftmin	Velocity Pressure, in wg	Total Pressure, in. wg	Flow Rate, cfm	Ractius of Diffusion ${ }^{4}$ ft			NC^{+}
					Mm.	Mid.	Max.	
6	400	0.010	0.026	80	2	2	4	-
	500	0.016	0.041	100	2	3	5	-
	600	0.023	0.059	120	2	4	6	14
	700	0.031	0.079	140	3	4	7	19
	800	0.040	0.102	160	3	5	8	23
	900	0.051	0.130	180	4	5	9	26
	1000	0.063	0.161	200	4	6	10	30
	1200	0.090	0.230	235	5	7	11	35
8	400	0.010	0.033	140	2	4	6	-
	500	0.016	0.052	175	3	4	7	15
	600	0.023	0.075	210	4	5	9	21
	700	0.031	0.101	245	4	6	10	26
	800	0.040	0.130	280	5	7	11	31
	900	0.051	0.166	315	5	8	13	34
	1000	0.063	0.205	350	6	9	14	37
	1200	0.090	0.292	420	7	11	17	44
10	400	0.010	0.027	220	3	4	7	-
	500	0.016	0.043	270	3	5	8	11
	600	0.023	0.062	330	4	6	10	17
	700	0.031	0.084	380	5	7	11	21
	800	0.040	0,108	435	5	8	13	26
	900	0.051	0.138	490	6	9	15	30
	1000	0.063	0.170	545	7	10	16	33
	1200	0.090	0.243	655	8	12	20	39
12	400	0.010	0.026	315	3	5	8	-
	500	0.016	0.042	390	4	6	10	11
	600	0.023	0.060	470	5	7	12	17
	700	0.031	0.081	550	6	8	13	22
	800	0.040	0.105	630	6	10	15	26
	900	0.051	0.134	705	7	11	17	30
	1000	0.063	0.166	785	8	12	19	33
	1200	0.090	0.236	940	10	14	23	39
18	400	0.010	0.030	710	5	7	12	-
	500	0.016	0.048	885	6	9	15	15
	600	0.023	0.069	1060	7	11	18	21
	700	0.031	0.093	1240	9	13	21	26
	800	0.040	0.120	1420	10	15	24	30
	900	0.051	0.153	1590	11	17	27	34
	1000	0.063	0.189	1770	12	19	30	37
	1200	0.090	0.270	2120	15	22	36	43
a.	-mn	anan	ama	*nan	,	n	\cdots	

Table 11-4 Performance Data for a Typical Round Ceiling Diffuser (continued)

[^0]Table 11-5 Performance Data for an Adjustable-Type, High Sidewall Diffiser

Sizes, in	$\begin{aligned} & A_{i T} \\ & \mathrm{fi}^{2} \end{aligned}$	Flow, Rate, cm	Veloc. ft/min	Veloc. Press., in wg	Total Pressure, in wg			NC	Deff, deg	Throw, ft		
					0°	22, $\frac{1}{2}^{\circ}$	45°			Min.	Mid.	Max.
8×4	0.18	70	400	0.010	0.017	0.019	0.029	-	0	6	8	15
7×5,									$22 \frac{1}{2}$	5	6	12
6×6									45	3	4	8
10×4,	0.22	90						-	0	7	10	17
8×5,									$22 \frac{1}{2}$	6	8	14
7×6									45	3	5	9
12×4,	0.26	105						-	0	7	11	19
10×5,									$22 \frac{1}{2}$	6	9	15
8×6									45	4	5	9
16×4,	0.34	135						-	0	8	12	21
12×5,									$22 \frac{1}{2}$	6	10	17
10×6									45	4	6	11
18×4,	0.39	155						-	0	9	13	23
14×5,									$22 \frac{1}{2}$	7	10	18
12×6,									45	4	6	11
8×4,	0.18	90	500	0.016	0.028	0.031	0.047	-	0	7	11	17
7×5,									$22 \frac{1}{2}$	6	9	14
6×6									45	4	5	9
10×4,	0.22	110						-	0	8	12	19
8×5,									$22 \frac{1}{2}$	6	10	15
7×6									45	4	6	10
12×4,	0.26	130						-	0	9	13	21
$10 \times 5,$									$22 \frac{1}{2}$	7	10	17
8×6									45	4	7	10
16×4,	0.34	170						-	0	10	15	24
12×5,									$22 \frac{1}{2}$	8	12	19
10×6									45	5	8	11
18×4,	0.39	195						-	0	11	16	25
14×5,									$22 \frac{1}{2}$	9	13	20
12×6,									45^{2}	5	8	13

Table 11-5 Performance Data for an Adjustable-Type, Figh Sidewall Diffiner (contimued)

Sizes, in	$\frac{A_{\mathrm{f}}}{}$	Flow, Rate, cfim	Veloc. $\mathrm{ft} / \mathrm{min}$	Veloc. Press., in $w g$	Total Pressure, in wg			NC	Defl, deg	Throw, fir		
					0^{8}	$22 \frac{1}{2}^{\circ}$	45°			Min.	Mid.	Max
8×4,	0.18	110	600	0.022	0.038	0.043	0.064	10	0	9	13	19
7×5,									$22 \frac{1}{2}$	7	10	15
6×6									45	4	7	10
10×4,	0.22	130						10	0	9	15	21
8×5,									$22 \frac{1}{2}$	7	12	17
7×6									45	5	7	10
12×4,	0.26	155						11	0	10	16	23
10×5,									$22 \frac{1}{2}$	8	13	18
8×6									45	5	8	11
16×4,	0.34	205						12	0	12	19	26
12×5,									$22 \frac{1}{2}$	10	15	21
10×6									45	6	9	13
18×4,	0.39	235						13	0	13	19	28
14×5,									$22 \frac{1}{2}$	10	15	22
12×6,									45	7	10	14
8×4,	0.18	125	700	0.030	0.052	0.058	0.088	15	0	10	15	20
7×5,									$22 \frac{1}{2}$	8	12	16
6×6									45	5	7	10
10×4,	0.22	155						15	0	11	16	23
8×5,									$22 \frac{1}{2}$	9	13	18
7×6									45	6	8	11
12×4,	0.26	180						16	0	12	17	24
10×5,									$22 \frac{1}{2}$	10	14	19
8×6									45	6	9	12
16×4,	0.34	240						17	0	14	20	28
12×5,									$22 \frac{1}{2}$	11	16	22
10×6									45	7	10	14
18×4,	0.39	275						18	0	15	22	30
14×5,									$22 \frac{1}{2}$	12	18	24
12×6,									45	8	11	15
8×4,	0.18	145	800	0.040	0.069	0.078	0.117	19	0	11	16	22
7×5,									$22 \frac{1}{2}$	9	13	18
6×6									45	6	8	11
10×4,	0.22	175						19	0	13	17	24
8×5,									$22 \frac{1}{2}$	10	14	19
7×6									45	6	9	12
12×4,	0.26	210						20	0	14	19	26
10×5,									$22 \frac{1}{2}$	11	15	21
8×6									45	7	9	13
16×4.	0.34	270						21	0	16	22	30

Table 11-5 Performance Data for an Adjustable-Type, High Sidewall Diffiser (continued)

[^1]Example 2: Suppose the room of Figure 1 is located in the southern latitudes where overhead systems are recommended. Select a round ceiling diffuser system and a high sidewall system. Also select a return grille.

Given: 250 cfm air quantity Required:
Select a round ceiling diffuser, select high sidewall grille, and select a return grille.

Figure 1
Solution: The data of Table 11.1 with information from Table 11.2 and 11.4 will be used to select a ceiling diffuser. The characteristic length is 7 or 8 ft and the throw-to-length ratio is 0.8 ; then

$$
\mathrm{x}_{50} / \mathrm{L}=0.8 \quad \rightarrow \quad \mathrm{x}_{50}=0.8 \times(7)=5.6 \mathrm{ft}
$$

Using correction factor: $\quad \mathrm{X}_{50}=5.6 / 0.75=7.5$
The best choice would be

Size, in	Throw, ft	NC	ΔP_{0}, in. wg
10	$71 / 2$	10	0.035

The throw is larger than desired, but the throw-to-length ratio is within the range to give a minimum ADPI of 76 percent. Figure 1a shows this application.

A high sidewall diffuser may be selected from Table 11.2. In this case the throw-to-length ratio should be about 1.8 and the characteristic length is 14 ft ; then
$\mathrm{x}_{50} / \mathrm{L}=1.8 \quad \rightarrow \quad \mathrm{x}_{50}=1.8 \times(14)=25.2 \mathrm{ft}$
At 240 cfm , pressure drop at $221 / 2$ degree spread would be 0.058 :
At 250 cfm , pressure drop at $221 / 2$ degree spread would be acceptable

$$
\Delta P=\left(\frac{250}{240}\right)^{2} \times 0.058=0.063 \text { in. } \mathrm{wg}
$$

The best choice would be

Size, in	Throw, ft	NC	ΔP_{0}, in. wg
16×4			
12×5	25	18	0.063
10×6			

RETURN GRILLES

Velocities thru return grilles depend on (1) the static pressure loss allowed and (2) the effect on occupants or materials in the room. In determining the pressure loss, computations should be based on the free velocity thru the grille, not on the face velocity, since the orifice coefficient may approach 0.7. In general the following velocities may be used (see table 1-7):

Table 1-7 Recommended return velocities for different applications.

\left.| GRILLE LOCATION | FPM OVER |
| :--- | :--- |
| GROSS AREA | |$\right]$

- Thru undercut area

Table 11 .6 Performance Data for One Type of Return Grille

\because		Core Velocity. fpm	200	300	400	500	600	700	800
		Velocity Pressure, in. wg	0.002	0.006	0.010	0.016	0.023	0.031	0040
$\begin{aligned} & A^{\delta} \\ & \mathrm{ft}^{2} \end{aligned}$	Sizes, in.	Static Pressure. in. wg	-0.011	-0.033	-0.055	-0.088	-0.126	-0.170	-0,
0.34	16×4	cfm	70	100	135	170	205	240	
	10×6	NCa°			13	20	25	30	270 33
0.39	18×4	cfm	80	115	155	195	235	275	33 310
	12×6	NC			14	21	26		310 34
0.46	20×4	cfm	90	140	185	230	275	320	34 370
	14×6	NC			15		27	320 32	370 35
	10×8 24×4	cfm	105	155					
0.60	16×6	${ }_{\mathrm{NCm}}$	105	155	210 16	260 23	310 28		415
	28×4	cfm	120	180	240	300	360	33 420	36 480
	18×6 12×8	NC			17	24	29	34	480 37
0.69	30×4	cfm	140	205	275	345			
	20×6 14×8	NC			17	24	29	485 34	550 37
	12×10								
0.81	36×4	cfm	160	245	325	405			
	22×6 16×8	NC		10	18	25	485	$\begin{aligned} & 565 \\ & 35 \end{aligned}$	$\begin{gathered} 650 \\ 38 \end{gathered}$
	14×10								
0.90	40×4	cfm	180	270	360	450			
	26×6 18×8	NC		11	19	26	54 31	$\begin{gathered} 630 \\ 36 \end{gathered}$	$\begin{gathered} 720 \\ 39 \end{gathered}$
	16×10								
	12×12								
1.07	48×4	cfm	215	320					
	30×6 18×10	NC		12	20	535 27	$\begin{gathered} 640 \\ 32 \end{gathered}$	$\begin{gathered} 750 \\ 37 \end{gathered}$	855 40
	14×12								
1.18	34×6	cfm	235						
	24×8	NC		$\begin{aligned} & 355 \\ & 13 \end{aligned}$	$\begin{aligned} & 470 \\ & 21 \end{aligned}$	590	710	825	945
	20×10						33	38	41
	16×12								
1.34	60×4	cfm	270	400	535				
	36×6 18×12	NC		13	21	$\begin{gathered} 670 \\ 28 \end{gathered}$	805	940 38	1070
	16×14								
1.60	30×8	cfm	320						
	24×10	NC	320	480	640	800	960	1120	1280
	22×12			14	22	29	34	39	42
	18×14								

Thble 11.6 verformance Data for One Type of Return Grille (continued)

${ }^{4}$ Based on a room absorption of 8 dB , with respect to 10^{-12} watts, and one return.

Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

Example: Small store dimensions: $32 \times 23 \times 16 \mathrm{ft}$ Ceiling - flat
Load - equally distributed
Air quantity - 2000 cfm
Temp difference - 25 F
Find: Number of outlets, Size of outlets,

Solution:

-The minimum blow is 75% of the room width for the given condition of equally distributed heat load. Therefore, the minimum blow necessary is: $23 \times 0.75=17.3 \mathrm{ft}$

- The maximum blow is the width of the room $=32 \mathrm{ft}$
- The blow of 17.5 to 34 ft .
- No. of outlets $=\frac{2000}{500}=4$
- nominal size 24 in. $x 6$ in
$\mathrm{k}=\frac{2000}{32 \times 16}=3.9$

TABLE 1-B - WALL OUTLET RATINGS, FOR COOLING ONLY

For Flat Ceilings

OUHIT VELOgTY		24 PFP					DP Prm					Sthem					790 PM				
STALC Passut 		$\begin{gathered} 5+I=0,2244^{2}=\pi 1 \\ i y^{\prime \prime}=0 \end{gathered}$					$s I=g 1, n H^{4}=D 13$										$\begin{gathered} 4-1-9 y_{1} 32 x^{4}-n 61 \\ 4 \end{gathered}$				
Sthic Phsume with HELGAC FATL							$\begin{gathered} 51 \mathrm{n}=\frac{\pi 4,25}{45}=045 \end{gathered}$										$\frac{I r i}{}=\frac{175,12 h^{4}-16}{4 s^{t}-3}$				
Hem, Fie -1 Oytin G-1 Pit Aral	Yent Linn		$\left.\frac{4}{\omega \mid} \right\rvert\,$	Temp Din [i]				$\begin{aligned} & \text { el } \\ & \text { (n) } \end{aligned}$				AirOuneuntata		Tump Pin ${ }^{\text {¢ }}$				$\begin{aligned} & 1+4 \\ & 4 n \end{aligned}$	Temp Dili (i)		
				13	30	15			11	28	3			15	N	3			11	30	21
				Min Cly					Hinclan					Hinclay					Ming		
$\begin{aligned} & 4=4 \\ & \mid 16.51 \end{aligned}$	$\frac{12}{45^{4}}$	46	$\begin{aligned} & 34 \\ & \frac{2}{45} \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.4 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & i s \\ & 06 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 70 \\ 4.4 \\ 4 \end{array} \right\rvert\,$	44	$\begin{aligned} & 70 \\ & 31 \\ & 39 \end{aligned}$	$\begin{aligned} & 74 \\ & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & 71 \\ & 70 \\ & 19 \end{aligned}$	$\begin{aligned} & 49 \\ & 76 \\ & 70 \end{aligned}$	5	$\begin{aligned} & 160 \\ & 75 \\ & 50 \end{aligned}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$	$\begin{aligned} & 10 \\ & 75 \\ & 63 \end{aligned}$	$\begin{aligned} & 15 \\ & 70 \end{aligned}$	4	$\begin{array}{\|c} 170 \\ 1100 \\ 000 \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ 4 . \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 10 \\ & 70 \end{aligned}$
$\begin{aligned} & \text { He4 } \\ & \text { (17) } \end{aligned}$	Hrather 21% 45	7 7	$\frac{34}{14}$	$\begin{aligned} & 6.5 \\ & 6.9 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 40 \end{aligned}$	$\left\|\begin{array}{l} 75 \\ 75 \\ 5.9 \end{array}\right\|$	ir	$\begin{aligned} & i 4 \\ & i 5 \end{aligned}$	$\begin{aligned} & 74 \\ & 81 \\ & 41 \end{aligned}$	$\begin{aligned} & 75 \\ & i 5 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 76 \\ & 76 \end{aligned}$	FI	$\begin{aligned} & 10.5 \\ & 10 \\ & 34 \end{aligned}$	$\begin{aligned} & 7.4 \\ & y_{6} \\ & 45 \end{aligned}$	$\begin{aligned} & 10 \\ & 55 \\ & 65 \end{aligned}$	$\frac{15}{75}$	112	$\begin{aligned} & 110 \\ & 100 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 18 \\ & 78 \\ & 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 90 \\ & 10 \\ & 70 \end{aligned}$
$\begin{aligned} & B=4 \\ & B 4 \Delta+1 \end{aligned}$	4hint N14 4	44	$\frac{34}{14}$	$\begin{aligned} & 64 \\ & 49 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 49 \\ & 64 \end{aligned}$	$\left.\begin{aligned} & 24 \\ & 70 \\ & 4 i \end{aligned} \right\rvert\,$	4	$\begin{aligned} & 74 \\ & 59 \\ & 19 \end{aligned}$	$\begin{aligned} & 79 \\ & 76 \\ & 45 \end{aligned}$	$\begin{aligned} & 24 \\ & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 10 \\ & 70 \\ & 70 \end{aligned}$	b1	$\begin{aligned} & 110 \\ & 1.1 \\ & 3 . \end{aligned}$	$\begin{aligned} & 10 \\ & 70 \\ & 40 \end{aligned}$	$\begin{aligned} & 10 \\ & 75 \\ & 75 \end{aligned}$	$\frac{14}{75}$	13	$\begin{gathered} 110 \\ 140 \\ 100 \end{gathered}$	$\begin{aligned} & 14 \\ & 74 \\ & 48 \end{aligned}$	$\begin{aligned} & 10 \\ & \frac{10}{10} \end{aligned}$	$\begin{aligned} & 78 \\ & 78 \end{aligned}$
$\begin{aligned} & 14.4 \\ & 15151 \end{aligned}$	$\frac{8194}{24}$	4	$\begin{aligned} & \frac{y}{y} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 78 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 76 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 78 \\ & 78 \\ & 48 \end{aligned}$	解	$\begin{aligned} & 79 \\ & 40 \\ & 10 \end{aligned}$	$\begin{aligned} & 78 \\ & 78 \\ & 63 \end{aligned}$	$\begin{aligned} & 74 \\ & 70 \\ & 45 \end{aligned}$	$\frac{10}{70}$	17	$\begin{aligned} & 118 \\ & 41 \\ & 14 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 18 \\ & 78 \\ & 78 \end{aligned}$	$\begin{aligned} & 14 \\ & 70 \end{aligned}$	1 H	$\begin{aligned} & 100 \\ & 180 \\ & 100 \end{aligned}$	$\frac{15}{35}$	$\begin{aligned} & 90 \\ & 70 \\ & 70 \end{aligned}$	4 78 7
$\begin{aligned} & 30.14 \\ & 1451 \end{aligned}$	$\begin{aligned} & \text { Whelen } \\ & \frac{15}{4} \end{aligned}$	77	$\begin{aligned} & 40 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & \frac{10}{65} \end{aligned}$	$\left\|\begin{array}{l} \frac{7}{7} \\ 4.5 \end{array}\right\|$	11i	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 76 \\ & 65 \end{aligned}$	$\frac{76}{75}$	$\frac{10}{70}$	14	$\begin{aligned} & 113 \\ & 43 \\ & 45 \end{aligned}$	$\frac{10}{13}$	$\begin{aligned} & 19 \\ & 78 \\ & 70 \end{aligned}$	$\begin{aligned} & 15 \\ & 80 \\ & 70 \end{aligned}$	31	$\begin{aligned} & 700 \\ & 108 \\ & 100 \end{aligned}$	$\begin{aligned} & 19 \\ & i 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 70 \end{aligned}$	48 78 8
$\begin{aligned} & 4 \pi 54 \\ & 1509 \mid \end{aligned}$	$\begin{gathered} 41+54 \\ 45 \\ 45 \end{gathered}$	01	$\begin{aligned} & 41 \\ & 1.1 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 55 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 83 \\ & \hline \end{aligned}$	$\left.\begin{array}{\|} 78 \\ 78 \\ 30 \end{array} \right\rvert\,$	111	$\begin{aligned} & 10 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 75 \\ & 15 \end{aligned}$	$\begin{aligned} & \frac{10}{75} \\ & 70 \end{aligned}$	14	$\begin{array}{r} 113 \\ 45 \\ 6 \end{array}$	$\begin{aligned} & 10 \\ & 15 \\ & 85 \end{aligned}$	$\begin{aligned} & 70 \\ & 76 \\ & 76 \end{aligned}$	$\begin{aligned} & 13 \\ & 80 \\ & 70 \end{aligned}$	\%	$\begin{aligned} & 300 \\ & 189 \\ & 104 \end{aligned}$	$\begin{aligned} & 19 \\ & 75 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 70 \end{aligned}$	104 8.4 8
$\begin{aligned} & 20 \times 4 \\ & \|14 y\| \end{aligned}$		114	$\begin{aligned} & 42 \\ & 3.1 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 70 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 79 \\ & 76 \\ & 65 \end{aligned}$	$\begin{aligned} & 73 \\ & 79 \\ & 49 \end{aligned}$	175	$\frac{10}{40}$	$\begin{aligned} & 24 \\ & 70 \\ & 45 \end{aligned}$	$\begin{aligned} & 40 \\ & 78 \\ & 48 \end{aligned}$	$\frac{10}{75}$	210	$\begin{aligned} & 100 \\ & 10 \\ & 00 \end{aligned}$	$\frac{18}{75}$	10	$\begin{aligned} & 18 \\ & 10 \end{aligned}$	14	$\begin{aligned} & 710 \\ & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 15 \\ & 75 \\ & 78 \end{aligned}$	$\begin{aligned} & 45 \\ & 10 \\ & 70 \end{aligned}$	100 88 78
$\begin{aligned} & 3 \ln 4 \\ & \ln 5 \mid \end{aligned}$	$\frac{5+1 p^{2}}{25^{2}}$	146	$\begin{aligned} & 44 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 36 \\ & 4.3 \\ & 60 \end{aligned}$	$\begin{aligned} & 75 \\ & 76 \\ & 65 \end{aligned}$	$\begin{aligned} & 73 \\ & 70 \\ & 49 \end{aligned}$	114	$\begin{aligned} & 10 \\ & 19 \\ & 4 . \end{aligned}$	$\begin{aligned} & 79 \\ & 79 \\ & 65 \end{aligned}$	$\frac{10}{74}$	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	7	$\begin{array}{r} 120 \\ 85 \\ 65 \end{array}$	$\begin{aligned} & 10 \\ & 75 \\ & 45 \end{aligned}$	$\frac{75}{70}$	$\begin{aligned} & \frac{70}{70} \\ & 70 \end{aligned}$	H3	$\begin{aligned} & 710 \\ & 110 \\ & 110 \end{aligned}$	79	$\begin{aligned} & 15 \\ & 15 \\ & 70 \end{aligned}$	
$\frac{B+1}{64}$	4nopit 15^{4}	13	$\begin{aligned} & \frac{10}{14} \\ & \frac{14}{2} \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \\ & 30 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \frac{85}{75} \\ 45 \end{array} \right\rvert\,$	F	$\begin{aligned} & 1.4 \\ & 7 \Delta \\ & 4.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 88 \\ & 76 \end{aligned}$	$\begin{aligned} & i 5 \\ & 40 \\ & 70 \end{aligned}$	149	$\begin{aligned} & 128 \\ & 18 \\ & 48 \end{aligned}$	$\begin{aligned} & 15 \\ & 75 \end{aligned}$	$\begin{aligned} & 46 \\ & i 6 \\ & 7 \% \end{aligned}$	$\begin{aligned} & 16 \\ & 45 \end{aligned}$	14	$\begin{aligned} & 70 \\ & 180 \\ & 120 \end{aligned}$	$\begin{aligned} & 18 \\ & i 8 \\ & \hline 8 \end{aligned}$	$\begin{gathered} 100 \\ 75 \\ 75 \end{gathered}$	109
$\begin{aligned} & 10-18 \\ & \operatorname{Dig} \end{aligned}$	$\frac{\operatorname{sel} 94}{235}$	4	$\begin{aligned} & 45 \\ & 41 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \\ & 45 \end{aligned}$	$\begin{aligned} & 19 \\ & 78 \\ & 70 \\ & 70 \end{aligned}$	$\frac{89}{70}$	$\dagger 1$	$\begin{aligned} & 180 \\ & 7.5 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & \frac{10}{75} \end{aligned}$	$\begin{aligned} & 8 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & i s \\ & i s \end{aligned}$	131	$\begin{gathered} 180 \\ 110 \\ 70 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \frac{85}{55} \\ & 75 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 5 \end{aligned}$	14	$\begin{aligned} & 270 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 38 \\ & 78 \end{aligned}$	$\begin{aligned} & 165 \\ & 79 \\ & 75 \end{aligned}$	(113
$\begin{aligned} & 11 \times 6 \\ & 414 \end{aligned}$	$\frac{174^{4}}{45^{4}}$	4	$\begin{aligned} & 50 \\ & 48 \\ & 30 \end{aligned}$	$\frac{75}{76}$	$\begin{aligned} & 148 \\ & 70 \\ & 70 \end{aligned}$	$\frac{15}{70}$	114	$\begin{gathered} 11.0 \\ 4.1 \\ i .5 \end{gathered}$	$\begin{aligned} & 10 \\ & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { +0 } \\ & 70 \\ & 70 \end{aligned}$	$\frac{14}{13}$	13	$\begin{array}{r} 130 \\ 110 \\ 30 \end{array}$	$\begin{aligned} & 18 \\ & 10 \\ & \hline 10 \end{aligned}$	$\begin{gathered} 14 \\ 75 \end{gathered}$	$\begin{aligned} & 180 \\ & 70 \\ & \hline 0 \end{aligned}$	314	$\begin{aligned} & 310 \\ & 310 \\ & 140 \end{aligned}$	106	$\begin{aligned} & 118 \\ & 18 \\ & 18 \end{aligned}$	(115
$\frac{14+4}{144}$	$\begin{aligned} & \text { trolyH } \\ & \operatorname{IS}^{1} \end{aligned}$	18	$\begin{aligned} & \frac{62}{47} \\ & \frac{12}{2} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 75 \\ & 70 \end{aligned}$	$\frac{54}{70}$	141	$\begin{gathered} 120.9 \\ 18 \\ 48 \end{gathered}$	$\begin{aligned} & 15 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { 易 } \\ & 70 \end{aligned}$	$\begin{aligned} & 14 \\ & 75 \end{aligned}$	314	$\begin{aligned} & 149 \\ & 120 \\ & 40 \end{aligned}$	$\frac{19}{78}$	$\begin{aligned} & 10.9 \\ & 80 \\ & 75 \end{aligned}$	$\frac{109}{98}$	181	$\begin{aligned} & 300 \\ & 710 \\ & 100 \end{aligned}$	119 $i 8$ 78	$\begin{array}{\|c} 11.8 \\ 108 \\ 18 \end{array}$	(12.4
$\begin{aligned} & \operatorname{mox}_{4} 4 \\ & \nabla 15 \end{aligned}$	$\frac{52 x^{4}}{4 y^{2}}$	134	$\begin{aligned} & 34 \\ & 30 \\ & 11 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ 75 \\ \hline 5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.5 \\ 7.3 \\ \hline 70 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & 7 \end{aligned}$	30	$\begin{array}{\|c} 120 \\ \hline 0 \\ \hline 14 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & \frac{1}{7} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 100 \\ 80 \\ 75 \end{array}$	34	$\begin{aligned} & 170 \\ & 120 \\ & 98 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 80 \\ 100 \\ \hline \end{array}$	11.8 15 18	40	$\begin{aligned} & 120 \\ & 140 \\ & 160 \\ & \hline \end{aligned}$	11.3 48 48	$\begin{array}{r} 170 \\ 100 \\ 1.5 \\ \hline \end{array}$	(13.0
$\begin{aligned} & 7+1 \\ & (4+3) \end{aligned}$	$\frac{5 n y 4}{124}$	144	$\begin{aligned} & 70 \\ & 31 \\ & 24 \end{aligned}$	$\begin{aligned} & 19 \\ & 75 \\ & 78 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { pe } \\ & i 6 \\ & 7.4 \end{aligned}$	34	$\begin{array}{\|c} 110 \\ 168 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 70 \end{aligned}$	$\frac{8.8}{84}$	$\begin{gathered} 109 \\ 10 \\ 10 \end{gathered}$	334	$\begin{array}{r} 110 \\ 130 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 3.5 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 105 \\ 00 \\ 00 \\ \hline 0.0 \end{array}$	$\begin{array}{\|c} 110 \\ 150 \\ 1.9 \end{array}$	44	$\begin{aligned} & 310 \\ & 300 \\ & 100 \end{aligned}$	120 100 10	$\begin{gathered} 115 \\ 155 \\ 15 \end{gathered}$	(196
	$\frac{7 n y}{75}$	W	$\begin{aligned} & 78 \\ & 34 \end{aligned}$	$\begin{array}{\|c\|} \hline \frac{3}{75} \\ \hline 2 \end{array}$	$\begin{array}{\|l} \hline 13 \\ 10 \\ 70 \\ \hline 10 \end{array}$	$\begin{aligned} & \frac{18}{8} \\ & 79 \end{aligned}$	34	$\begin{array}{\|c} 19.0 \\ 16.0 \\ 4.1 \end{array}$	$\begin{aligned} & 79 \\ & 70 \\ & 79 \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ 78 \\ 78 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ 05 \\ 10 \\ \hline 0 \end{array}$	$4 \times$	$\begin{aligned} & 190 \\ & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 70 \\ & 75 \end{aligned}$	$\begin{array}{\|c\|} \hline 10 \\ 14 \\ 40 \\ \hline \end{array}$	$\begin{array}{\|c} 113 \\ 189 \\ 14 \\ \hline \end{array}$	401	$\begin{aligned} & 34,0 \\ & 310 \\ & 170 \end{aligned}$	120 100 00	12.3 10.5	(13.5
$\frac{\mathrm{Mn}}{\underline{4}}$	$\frac{4 \text { 4ap }}{4 y^{4}}$	341	$\begin{aligned} & 7.1 \\ & 31 \\ & 31 \end{aligned}$	$\begin{aligned} & 14 \\ & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & i 0 \\ & 75 \end{aligned}$	$\left\|\begin{array}{l} 63 \\ 73 \\ 75 \end{array}\right\|$	34	$\begin{aligned} & 12.0 \\ & 188 \\ & 48 \end{aligned}$	$\begin{aligned} & 7.5 \\ & \frac{15}{75} \end{aligned}$	$\begin{aligned} & 106 \\ & 80 \\ & \hline 80 \end{aligned}$	$\begin{gathered} 10.3 \\ i 5 \\ 10 \end{gathered}$	+	$\begin{aligned} & 196 \\ & 106 \\ & 100 \end{aligned}$	188	119 0.5 10	128 108 14	73	159 310 100	180 108 15	110 16.8 18.8	(14.4

- Inctor

[^0]: ${ }^{a}$ Minimmm radii of diffusion are to a terminal velocity of $150 \mathrm{ft} / \mathrm{min}$, middle to $100 \mathrm{ft} / \mathrm{min}$, and maximum to $50 \mathrm{ft} / \mathrm{min}$.
 ${ }^{5}$ The NC values are based on a room absorption of 18 dB referred to $10^{-13} \mathrm{~W}(8 \mathrm{~dB}$ referred to $10^{-12} \mathrm{~W}$).
 Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

[^1]: Source: Reprinted by permission of Environmental Elements Corporation, Dallas, TX.

