AL. MUSTACBAL UNIVERSITY

COLLEGE OF ENGINEERING AND TECHNOLOGIES
ALMUSTAQBAL UNIVERSITY

Digital Signal Processing (DSP)
 CTE 306

Lecture 5

- Continuous Time Signal -(2023-2024)
Dr. Zaidoon AL-Shammari
Lecturer / Researcher
zaidoon.waleed@mustaqbal-college.edu.iq

Continuous Time Signal

Al-Mustaqbal
University

Transformations of time: Time-Shifted Signals

To consider the time-shifted version of $\mathrm{x}(\mathrm{t})$, use the following rules:
The signal $\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)$ is $\mathrm{x}(\mathrm{t})$ shifted to the right by t_{0} seconds.

Delayed

Transformations of time: Time-Shifted Signals

To consider the time-shifted version of $\mathrm{x}(\mathrm{t})$, use the following rules:
The signal $x\left(t+t_{0}\right)$ is $x(t)$ shifted to the left by t_{0} seconds.

Delayed

Al-Mustaqbal
University

2 second right shift of $u(t)$

$$
u(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Advanced

Al-Mustaqbal
University

2 second left shift of $u(t)$

$$
u(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Example 1

$$
x(t)=u(t+1)-2 u(t-1)+u(t-3)
$$

Example 2

Sketch a waveform for a signal.

$$
x(t)=10 \sin (50 \pi t+0)
$$

```
Sol :
x(t)=10 sin}(50\pit+0
    10 sin}(2\pi(25)t+0
T T = 1/25 s
\thereforef=25 Hz ##
```


Solution

$$
x(t)=10 \sin (50 \pi t+\pi / 6)
$$

Example 3

Sketch a waveform for a signal, $\mathrm{x}(\mathrm{t})=5 \sin 377 \mathrm{t}$ with time in seconds.

Sol:

Peak (maximum) value, $\mathrm{A}_{(\mathrm{p})}=5$.

Frequency, $f=377 /(2 \pi)=60 \mathrm{~Hz}$.

Period, $\mathrm{T}=1 / \mathrm{f}=1 / 60 \mathrm{~Hz}=16.66 \mathrm{~ms}$.

Solution

Al-Mustaqbal
University

Example

Write the analytical expression for the signal with the phase angle in degrees.

Peak (maximum) value, $\mathrm{A}_{(\mathrm{p})}=200$.

Period, $\mathrm{T}=1.333 \mathrm{~ms}-0.333 \mathrm{~ms}=1 \mathrm{~ms}$.

Frequency $=1 / \mathrm{T}=1 / 1 \mathrm{~ms}=1 \mathrm{kHz}$.

Solution

$$
\begin{aligned}
\mathrm{t} & =0.500 \mathrm{~ms}-0.333 \mathrm{~ms} \\
& =0.167 \mathrm{~ms}
\end{aligned}
$$

$$
0.167 \mathrm{~ms}=(0.167 \mathrm{~ms} / 0.500 \mathrm{~ms}) 180^{\circ}
$$

$$
=60.12^{0}
$$

$$
x(t)=200 \sin \left(2 \pi 1000 t+60.12^{0}\right)
$$

AL- MUSTAQBAL UNIVERSITY COMPUTER TECHNIQUES ENGINEERING

Al-Mustaqbal
University

