

COLLEGE OF ENGINEERING AND TECHNOLOGIES ALMUSTAQBAL UNIVERSITY

Digital Signal Processing (DSP) CTE 306

Lecture 3

- Basic Operations on Signals -

Dr. Zaidoon AL-Shammari

Lecturer / Researcher

zaidoon.waleed@mustaqbal-college.edu.iq

www.uomus.edu.iq

AL MUSTADBAL UNIVERSIT

These operations can be classified into two categories,

- Operations performed on the dependent variable and
- Operations performed on the independent variable.

Amplitude scaling:

> Let x(t) denote a continuous-time signal. The signal y(t) resulting from amplitude scaling applied to x(t) is defined by

• y(t) = c x(t)

Where c is the scaling factor. According to above equation the value of y(t) is obtained by multiplying the corresponding value of x(t) by the scalar c.

Addition: \succ

> Let $x_1(t)$ and $x_2(t)$ denote a pair of continuous-time signals. The signal y(t)obtained by the addition of $x_1(t)$ and $x_2(t)$ is defined by

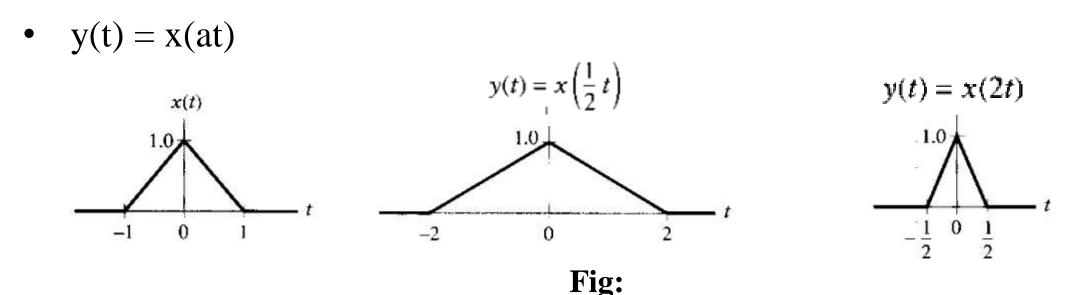
• $y(t) = x_1(t) + x_2(t)$

Multiplication:

> Let $x_1(t)$ and $x_2(t)$ denote a pair of continuous-time signals. The signal y(t)resulting from the multiplication of $x_1(t)$ and $x_2(t)$ is defined by

• $y(t) = x_1(t) x_2(t)$

Operations performed on the independent variable


- ➤ Time scaling:
 - This transformation is defined by x(n) = Mn or f(n) = n/N
 - Where M and N are positive integers.
 - In the case of f(n) = Mn,
 - The sequence x(Mn) is formed by taking every Mth sample of x(n) (this operation is known as down-sampling).
 - With f(n) = n/N the sequence y(n) = x(f(n))

(This operation is known as up-sampling).

➤ Time scaling:

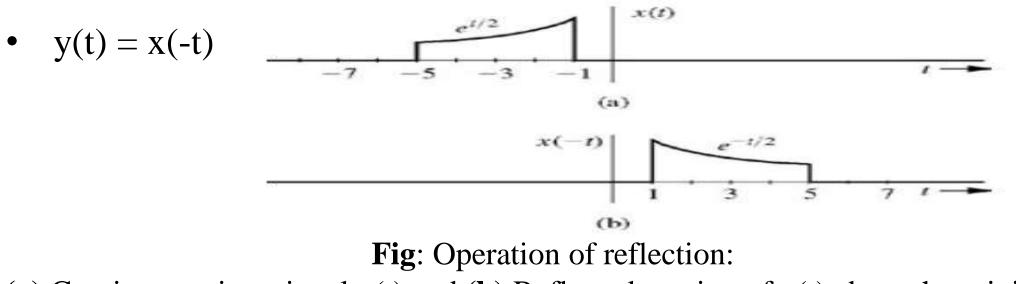
Let x(t) denote a continuous-time signal. The signal y(t) obtained by scaling the independent variable, time t, by a factor a is defined by

(a) Continuous-time signal x(t), (b) Time expanded version of signal x(t) by factor 2 (= 1/2)
(c) Compressed version of signal x(t) by factor 2 (= 2),

Dr. Zaidoon AL-Shammari

Computer Techniques Engineering

Operations performed on the independent variable:



- Time Reversal (Reflection):
 - This transformation is given by f(n) = -n
 - simply involves "flipping" the signal x(n) with respect to the index n.

Time Reversal (Reflection):

Let x(t) denote a continuous-time signal. Let y(t) denote the signal obtained by replacing time t with -t, as shown by

(a) Continuous-time signal x(t) and (b) Reflected version of x(t) about the origin x(-t)

Operations performed on the independent variable

➤ Time shifting:

- This is the transformation defined by
- $f(n) = n n_0$. If $y(n) = x(n n_0)$,
- x(n) is shifted to the right by n_0 samples
- If n_o is positive (this is referred to as a delay),
- And it is shifted to the left by n_0 samples
- If n_0 is negative (referred to as an advance).

➤ Time shifting:

Let x(t) denote a continuous-time signal. The time-shifted version of x(t) is defined by

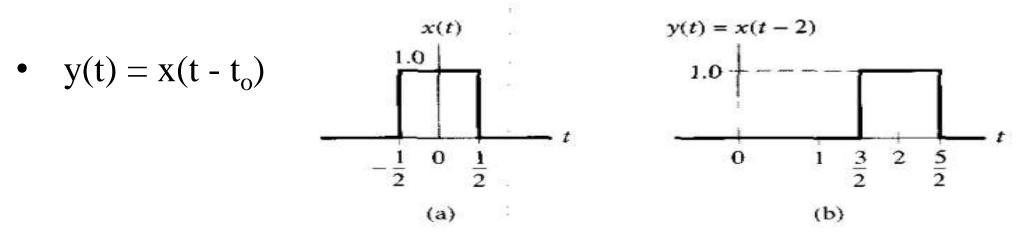
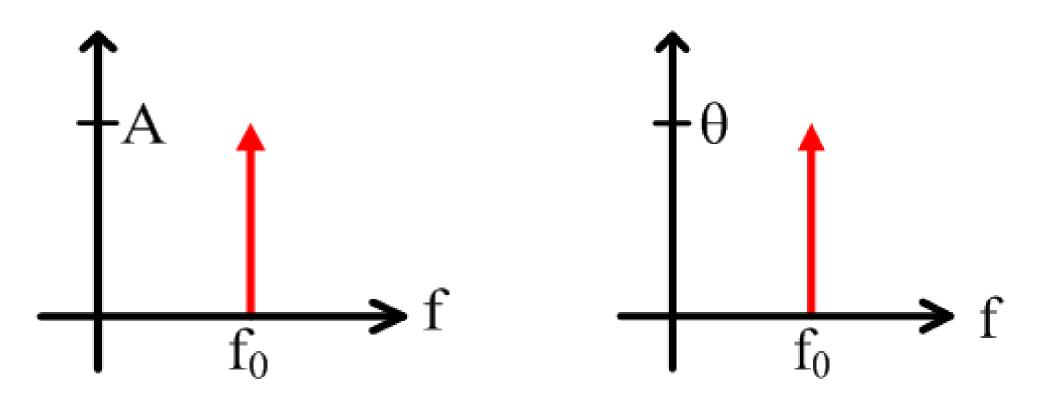


Fig: Time-shifting operation:

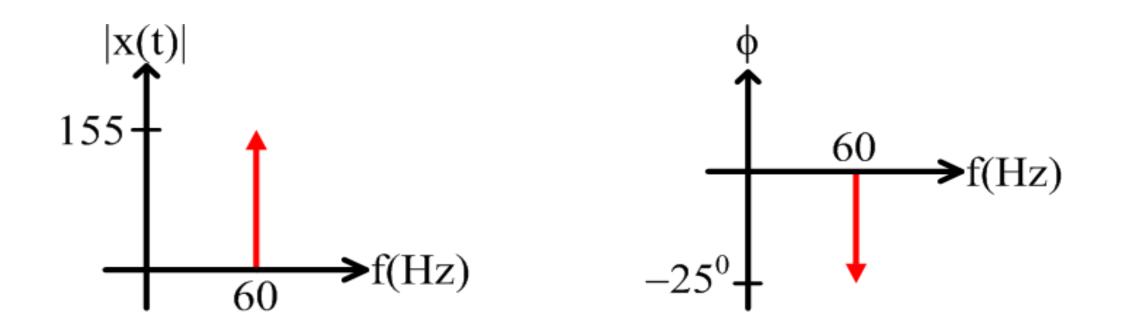
(a) Continuous-time signal x(t); and (b) Time-shifted version of x(t) by 2 time units

Sinusoidal Signal Properties



- Frequency.
- Period.
- Peak (maximum) value.
- Peak-to-peak value.

Amplitude & Phase Spectrums



Example

Represent $x(t) = 155 \cos (377t - 25^{\circ})$ in frequency domain.

AL- MUSTAQBAL UNIVERSITY COMPUTER TECHNIQUES ENGINEERING

