

AL-Mustaqbal University
College of Engineering
Department of Medical Instrumentation
Techniques Engineering
Zahraa Razaq & Huda Asaad

Watana UNIVERSITA

 $E\text{-Mail:}\ \underline{\text{huda.asaad@uomus.edu.iq}}\ , \ \underline{\text{zahraaraz1996@gmail.com}}$

EXP.NO: 1

Name of experiment: Monochromatic

Purpose of experiment: Using diffraction phenomena to measure the wavelength and demonstrate the laser properties.

Apparatus: Laser He-Ne, Single Slit, Ruler, Screen.

Theory: In the beginning you must understand what is the diffraction means of how happen so you can be observed when light travels through a hole (in the lab it is usually a vertical slit) whose width, a, is small. Light from different points across the width of the slit will take paths of different lengths to arrive at a viewing screen (Figure 1). When the light interferes destructively, intensity minima appear on the screen. Figure 1 shows such a diffraction pattern, where the intensity of light is shown as a graph placed along the screen. For a rectangular slit it can be shown that the minima in the intensity pattern fit the formula:

 $sin\theta \lambda = am$

Where:

m is an integer $(\pm 1, \pm 2, \pm 3,..)$.

a is the width of the slit.

 λ is the wavelength of the light.

 θ is the angle to the position on the screen.

The mth spot on the screen is called the mth order minimum. Diffraction patterns for other shapes of holes are more complex but also result from the same principles of interference.

AL-Mustaqbal University College of Engineering Department of Medical Instrumentation Techniques Engineering Zahraa Razaq &Huda Asaad

E-Mail: <u>huda.asaad@uomus.edu.iq</u>, <u>zahraaraz1996@gmail.com</u>

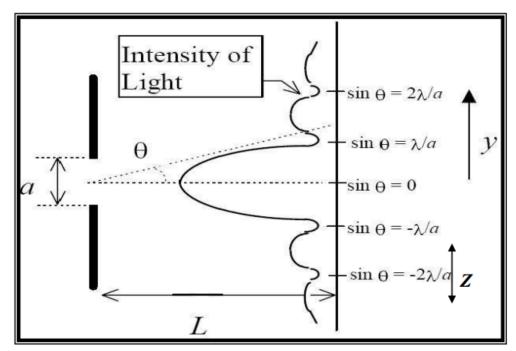


Fig (1): Diffraction by a slit of width a. Graph shows intensity of light on a screen.

Procedure:

1. Array your system as Fig (2).

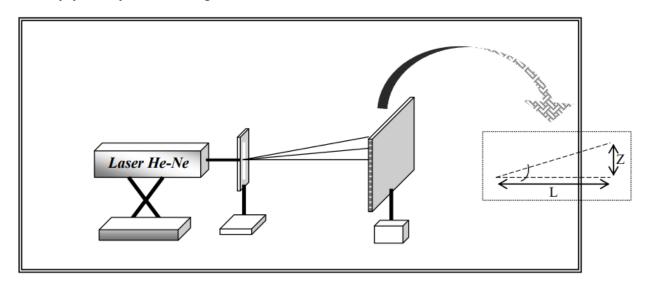


Fig (2): Setup of experiment

AL-Mustaqbal University College of Engineering Department of Medical Instrumentation Techniques Engineering Zahraa Razaq &Huda Asaad

E-Mail: huda.asaad@uomus.edu.iq, zahraaraz1996@gmail.com

Calculations:

- 1. Assume:
- a. The distance between slit and screen (L) equal to 0.515 m.
- b. The distance between center of fringes to first fringe (Z) equal to 0.103 cm.
- c. Calculate the angle θ from equation (1):

 $\tan \theta = Z/L \dots (1)$

2. Calculate the wavelength from equation (2):

 $\sin\theta \lambda = am....(2)$

Assume a = 3.33e-06

Discussion:

- 1. Explain Diffraction Phenomena?
- 2. Is the light must be coherence? Why?
- 3. from experiment, explain what the properties of laser?
- 4. Is Laser monochromatic light? Explain?