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Conduction through Multilayers Plane Wall 
 

 

Introduction:  

      In heat transfer analysis, we are often interested in the rate of heat transfer through           

a medium under steady conditions and surface temperatures. Such problems can be solved 

easily without involving any differential equations by the introduction of thermal resistance 

concepts in an analogous manner to electrical circuit problems. 

 In this case, the thermal resistance corresponds to electrical resistance, temperature 

difference corresponds to voltage, and the heat transfer rate corresponds to electric current. 

We start with one-dimensional steady heat conduction in a multilayer plane wall, cylinder, and 

sphere, and develop relations for thermal resistances in these geometries.  

 

        Consider a plane wall of thickness L and average thermal conductivity k. The two 

surfaces of the wall are maintained at constant temperatures of T1 and T2. For one-dimensional 

steady heat conduction through the wall, we have T(x). Then Fourier’s law of heat conduction 

for the wall can be expressed as: 

 

      
where the rate of conduction heat transfer Q cond wall and the wall area A are constant. Thus we 

have dT/dx = constant, which means that the temperature through the wall varies linearly 

with x. That is, the temperature distribution in the wall under steady conditions is a straight 

line. Separating the variables in the above equation and integrating from x = 0, where T(0) = 

T1, to x = L, where T(L) = T2, we get: 

 

  
 

 
    

Performing the integrations and rearranging gives 
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The Thermal Resistance Concept 
 

Heat conduction through a plane wall can be rearranged as 
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wall =    is the thermal resistance of the wall against heat conduction or 

simply the conduction resistance of the wall. 

 

The equation above for heat flow is analogous to the relation for electric current flow I, 

expressed as] 

 

 
 

              
 

Consider convection heat transfer from a solid surface of area  

As and temperature Ts to a fluid whose temperature sufficiently  

far from the surface is T∞ , with a convection heat transfer  

coefficient h.                                 
 

Newton’s law of cooling for convection heat transfer rate: 
 

Q conv =hAs (Ts -T∞)  can be rearranged as: 
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is the thermal resistance of the surface against heat convection, or simply the convection 

resistance of the surface. 
 

The rate of radiation heat transfer between a surface of emissivity ε and area As at temperature 

Ts and the surrounding surfaces at some average temperature Tsurr can be expressed as: 
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Where:      
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rad =   is the thermal resistance of a surface against radiation, or the  

 

radiation resistance, and hrad is the radiation heat transfer coefficient.  

 

Emissivity ( ):  0 – 1 ,     Stefan Boltzmann constant:  5.67 x10 -8  (W/m2.K) 
 

Note that both Ts and Tsurr must be in K in the evaluation of hrad. The definition of the radiation 

heat transfer coefficient enables us to express radiation conveniently in an analogous manner 

to convection in terms of a temperature difference. But hrad depends strongly on temperature 

while hconv usually does not.  
 

A surface exposed to the surrounding air involves convection and 

radiation simultaneously, The convection and radiation resistances are 

parallel to each other, as shown in the Fig., and may cause some 

complication in the thermal resistance network.  

 

When Tsurr = T∞ , the radiation effect can properly be accounted for by 

replacing h in the convection resistance relation by: 
  

 
 

where hcombined is the combined heat transfer coefficient. In this way, all the complications 

associated with radiation are avoided. 
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Thermal Resistance Network: 
 

 
 

The thermal resistance network for heat transfer through a plane wall  

subjected to convection on both sides, and the electrical analogy. 

 
Now consider steady one-dimensional heat flow through a plane wall of thickness L, area A, 

and thermal conductivity k that is exposed to convection on both sides to fluids at temperatures 

T∞1 and T∞2 with heat transfer coefficients h1 and h2, respectively, as shown in the Figure. 

Assuming T∞2 < T∞1, the variation of temperature will be as shown in the figure. Note that the 

temperature varies linearly in the wall, and asymptotically approaches T∞1 and T∞2 in the fluids 

as we move away from the wall. 
 

Under steady conditions we have: 
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or    

 
 

  
 

Adding the numerators and denominators yields, 
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Overall heat transfer coefficient (U) 

It is sometimes heat transfer through a medium 

convenient to express in an analogous manner to Newton’s 

law of cooling as, 
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where U is the overall heat transfer coefficient (W/m2.K). 
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Multilayer Plane Walls 
 

In practice we often encounter plane walls that 

consist of several layers of different 

materials. The thermal resistance concept can 

still be used to determine the rate of steady 

heat transfer through such composite walls. 
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Rtotal = the total thermal resistance, expressed 

as: 
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Once Q  is known, an unknown surface temperature Tj at any surface or interface j can be 

determined from: 
 

      where Ti is a known temperature at location i and Rtotal,i-j  is the total 

thermal resistance between locations i and j. 
 

         
 

Generalized Thermal Resistance Networks 
 

The thermal resistance concept or the electrical analogy can also be used to solve steady heat 

transfer problems that involve parallel layers or combined series-parallel arrangements. 
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Now consider the combined series-parallel arrangement shown,  the total rate of heat transfer 

through this composite system can again be expressed as: 
 

                                                                        

 
 

 
 

Once the individual thermal resistances are evaluated, the 

total resistance and the total rate of heat transfer can easily 

be determined from the relations above. 
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EXAMPLE:     Heat Loss through Double-Pane Windows 
 

Consider a 0.8 m high and 1.5 m wide double-pane window consisting of two 4 mm thick layers 

of glass (k= 0.78 W/m·°C) separated by a 10 mm wide stagnant air space (k= 0.026 W/m·°C).  

Determine the steady rate of heat transfer through this double-pane window and the 

temperature of its inner surface for a day during which the room is maintained at 20°C while 

the temperature of the outdoors is -10°C. Take the convection heat transfer coefficients on the 

inner and outer surfaces of the window to be h1= 10 W/m2 · °C and h2= 40 W/m2·°C, which 

includes the effects of radiation. 
 

Solution:            

Area:    A = 0.8 x 1.5 = 1.2 m2 

 
 

 


