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Heat transfer through the multilayered cylindrical and spherical shells 
 
 

Introduction:  
 

Steady heat transfer through a cylinder or sphere, and the multilayered cylindrical and 

spherical shells can be handled just like plane walls by simply adding an additional resistance 

in series for each additional layer. 
 

Heat transfer through a pipe can be modeled as steady and one-dimensional. The temperature 

of the pipe in this case will depend on one direction only (the radial r-direction) and can be 

expressed as T = T(r).  

In steady operation, there is no change in the temperature of the pipe with time at any point. 

Therefore, the rate of heat transfer into the pipe must be equal to the rate of heat transfer out of 

it. In other words, heat transfer through the pipe must be constant, =
.,cylconduction

Q constant.  

 

Cylindrical layer 
 

Consider a long cylindrical layer (such as a circular pipe) of inner radius r1 , outer radius r2 , 

length L, and average thermal conductivity k. The two surfaces of the cylindrical layer are 

maintained at constant temperatures T1 and T2. 

 There is no heat generation in the layer and the thermal conductivity is 

constant.  
 

For one-dimensional heat conduction through the cylindrical layer, we 

have T(r). Then Fourier’s law of heat conduction for heat transfer through 

the cylindrical layer can be expressed as, 

 

  
 

where A = 2πrL or by diameter (πDL) is the heat transfer area at location r. Note that A depends 

on r, and thus it varies in the direction of heat transfer.  
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Separating the variables in the above equation 

and integrating from r = r1, where T(r1) = T1, to 

r = r2, where T(r2) = T2, gives: 
 

 
 

Substituting A = 2πrL and performing the  

integrations give: 
 

 
 

  
 

 

since =
.,cylconduction

Q constant. This equation can be rearranged as, 
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is the thermal resistance of the cylindrical layer against heat conduction, or simply the 

conduction resistance of the cylinder layer. 
 

Spherical layer 
 

We can repeat the analysis above for a spherical layer by taking (surface area of sphere             

A= 4πr2 )  or (A= πD2) and performing the integrations, the result can be expressed as, 
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is the thermal resistance of the spherical layer against heat conduction, or simply the 

conduction resistance of the spherical layer. 

 

Now consider steady one-dimensional heat flow through a cylindrical or spherical layer that 

is exposed to convection on both sides to fluids at temperatures 
1

T  and 
2

T  with heat transfer 

coefficients h1 and h2, respectively.  

The thermal resistance network in this case consists of one conduction and two convection 

resistances in series, just like the one for the plane wall, and the rate of heat transfer under steady 

conditions can be expressed as: 
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Cylindrical Layer 
 

 
 

 

 
 

Spherical Layer 
 

 
 

 
 

Note that A in the convection resistance relation Rconv = 1/hA is the surface area at which 

convection occurs. It is equal to A = 2πrL for a cylindrical surface and A= 4πr2 for a spherical 

surface of radius r. Also note that the thermal resistances are in series, and thus the total 

thermal resistance is determined by simply adding the individual resistances, just like the 

electrical resistances connected in series. 

 
 

Multilayered Cylinders and Spheres 
 

Steady heat transfer through multilayered cylindrical or spherical shells can be handled just 

like multilayered plane walls discussed earlier by simply adding an additional resistance in 

series for each additional layer.  
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For example, the steady heat transfer rate through the three-layered composite cylinder of 

length L with convection on both sides can be expressed as: 
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Once Q  has been calculated, the interface temperature T2 between the first and second 

cylindrical layers can be determined from: 
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We could also calculate T2 from 
 

 
 

Multilayered Sphere  
 

This equation can also be used for a three-layered spherical shell by replacing the thermal 

resistances of cylindrical layers by the corresponding spherical ones, (A= 4πr2). 
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Example-1:  

Hot water at an average temperature of 90°C is flowing through a 15 m section of a cast iron 

pipe (k = 52 W/m·°C) whose inner and outer diameters are 4 cm and 4.6 cm, respectively. The 

outer surface temperature of the pipe is 80°C with emissivity ( ) of 0.7 and exposed to the cold 

air at 10°C in the basement, with a heat transfer coefficient of 15 W/m2 °C. The heat transfer 

coefficient at the inner surface of the pipe is 120 W/m2·°C. Determine the rate of heat loss 

from the hot water. 
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Solution:  

Assumptions 1 Heat transfer is steady since there is no indication of any change with time.            

2 Heat transfer is one-dimensional since there is thermal symmetry about the center line and no 

variation in the axial direction. 3 Thermal properties are constant. 
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     r1= 0.04/2 = 0.02m ,         r2 = 0.046/2 = 0.023m                  
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The radiation heat transfer coefficient is determined to be:  
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             T2 = 80 °C +273 = 353 K ,        Tsurr = 10 °C +273 = 283 K 

Since the surrounding medium and surfaces are at the same temperature, the radiation and 

convection heat transfer coefficients can be added and the result can be taken as the combined 

heat transfer coefficient. Then,      
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The rate of heat loss from the hot water pipe then becomes 
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Example-2 : 

A 5m internal diameter spherical tank made of 1.5cm thick stainless steel (k= 15 W/m·°C) is 

used to store iced water at 0°C. The tank is located in a room whose temperature is 30°C. The 

walls of the room are also at 30°C. The outer surface of the tank is black (emissivity  =1) at 

temperature of 5°C, and heat transfer between the outer surface of the tank and the surroundings 

is by natural convection and radiation. The convection heat transfer coefficients at the inner 

and the outer surfaces of the tank are 80 W/m2 · °C and 10 W/m2 ·°C, respectively. Determine 

(a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that 

melts during a 24 hrs. period. The heat of fusion of water at atmospheric pressure is                                                                                        

hif  = 333.7 kJ/kg.                                             
 

Solution: 
The inner and the outer surface areas of sphere are  

 
222222 m 49.79m) 03.5(          m 54.78m) 5( ======  ooii DADA  

The radiation heat transfer coefficient can be determined from: 
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       The individual thermal resistances are: 
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Then the steady rate of heat transfer to the iced water becomes 
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                 = 30.581 kJ/s 

 

(b) The total amount of heat transfer during a 24 hours period and the amount of ice that will 

melt during this period are 
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H.W 
  Consider a large plane wall of thickness L = 0.3 m, thermal conductivity k = 2.5 W/m · °C, and 

surface area A = 12 m2. The left side of the wall at x = 0 is subjected to a net heat flux of                                 

qo = 700 W/m2 while the temperature at that surface is measured to be T1 = 80°C. Assuming 

constant thermal conductivity and no heat generation in the wall, (a) express the differential 

equation and the boundary conditions for steady one-dimensional heat conduction through the 

wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential 

equation, and (c) evaluate the temperature of the right surface of the wall at x = L.  

           Answer: (c)      T = - 4°C 
                   

                                                                                                                  

 


