Heat transfer through the multilayered cylindrical and spherical shells

Introduction:

Steady heat transfer through a cylinder or sphere, and the multilayered cylindrical and
spherical shells can be handled just like plane walls by simply adding an additional resistance
in series for each additional layer.

Heat transfer through a pipe can be modeled as steady and one-dimensional. The temperature
of the pipe in this case will depend on one direction only (the radial r-direction) and can be
expressed as T = T(r).

In steady operation, there is no change in the temperature of the pipe with time at any point.
Therefore, the rate of heat transfer into the pipe must be equal to the rate of heat transfer out of

it. In other words, heat transfer through the pipe must be constant, Qcon duction cyl. = constant.

Cylindrical layer

Consider a long cylindrical layer (such as a circular pipe) of inner radius r1, outer radius rz,
length L, and average thermal conductivity k. The two surfaces of the cylindrical layer are
maintained at constant temperatures T1 and Ta.

There is no heat generation in the layer and the thermal conductivity is

constant.

For one-dimensional heat conduction through the cylindrical layer, we
have T(r). Then Fourier’s law of heat conduction for heat transfer through
the cylindrical layer can be expressed as,

dT

dr (W)

Qt'und.c}'l ==

where A = 2zrL or by diameter (zDL) is the heat transfer area at location r. Note that A depends
on r, and thus it varies in the direction of heat transfer.
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Separating the variables in the above equation (A=2nrL)
and mteghratm_lq from rl' =, where T(r1)) =Ty, to O (" dr T, o
r = r2, where T(r2) = T, gives: — —=—k
2 (2) 29 2l Jr=r, F A,’r 7"
r2 O cond, cyl "T; Q I )
—dr= — kdT I = —k(T2-T1
=r A IT=T1, 2L o] r ( :

. . . ¥
Substituting A = 2arL and performing the Inr2 —Inr1 = In ( f )
integrations give: :

. T, — T, L ln(r); (T1-T2)
Qu:nnd. cyl = 2mlLk - _- {‘NJ
In(ry/ry) ’ e T, — T,
cond, eyl — <" In(ry /ry)

since Q . = constant. This equation can be rearranged as,
conduction, cyl.

L-T. _ 1,-1,

Qcond_,cyl. = In(ry/ry) = T (W)
cvi
2wLk
' L-T
Qcond,cyl. - R W)
cyl
where R, = In(r, /1) _ In(Outer radius/Inner radius)

2Lk 2z x(Length) x (Thermal conductivity)

is the thermal resistance of the cylindrical layer against heat conduction, or simply the
conduction resistance of the cylinder layer.

Spherical layer

We can repeat the analysis above for a spherical layer by taking (surface area of sphere
A= 4nr?) or (A= nD?) and performing the integrations, the result can be expressed as,

. T,-T
Qcond,sph. = lR 2

sph.

W)

where R =12 —h _ Outer radius - Inner radius
™ 4zrrk 4z x(outer radius)x (Inner radius)x(Thermal conductivity)
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Is the thermal resistance of the spherical layer against heat conduction, or simply the
conduction resistance of the spherical layer.

Now consider steady one-dimensional heat flow through a cylindrical or spherical layer that
Is exposed to convection on both sides to fluids at temperatures T_, and T_, with heat transfer

coefficients h1 and ho, respectively.
The thermal resistance network in this case consists of one conduction and two convection
resistances in series, just like the one for the plane wall, and the rate of heat transfer under steady
conditions can be expressed as:

T

3 Tool_ 02
Q:R— (W)

total

Cylindrical Layer
=R +Rm,_ +R

total conv,1 conv,2

TN

_ n/n) 1 .
“Qrrl)h | 2alk | (rrL)h e

R

for a cylindrical layer, A1= (271' rlL) Az = (272';"21,)

Rlulul = R;\m\.] + R;)‘l * Rcun\:l

Spherical Layer

total Rconr.l + Rspﬁ:. comv .2

\ | }r_, —% 1
@zr ), dzrnk  (4zr)h

(C/W)

A1=(47T?’§2 ) ? A2=(471'.V:)

Note that A in the convection resistance relation Reonv = 1/hA is the surface area at which
convection occurs. It is equal to A = 2arL for a cylindrical surface and A= 4ar?for a spherical
surface of radius r. Also note that the thermal resistances are in series, and thus the total
thermal resistance is determined by simply adding the individual resistances, just like the
electrical resistances connected in series.

Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells can be handled just
like multilayered plane walls discussed earlier by simply adding an additional resistance in
series for each additional layer.
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For example, the steady heat transfer rate through the three-layered composite cylinder of
length L with convection on both sides can be expressed as:

total

Multilayered Cylinder

Rtotal - Rconv,l + Rcyl.l + RcyI.Z + Rcyl.3 + Rconv,Z
— 1 + In(rz/rl) + In(rS/rZ) + In(r4/r3) + 1 (OC/W)
hA 22k 24k, 22k, hA,
where A, = 2mr,L and A; = 27rylL.

Once Q has been calculated, the interface temperature T2 between the first and second
cylindrical layers can be determined from:

Q _ T-¢| - T} _ Tﬁc] - TJ
Rc'ﬂm.] + l"-""l:'gf']. l 1 + In{r‘y"r]}
h(Q2mrl) 2wk,
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We could also calculate T» from

. ?ﬁ] - ]igj . jﬁl - ?FIE
Q= Ry + Ry + Royn  In(rs/ry)  In(ryfrs) N 1
dnlk, | 2mulk, T h(2mrd)

Multilayered Sphere

This equation can also be used for a three-layered spherical shell by replacing the thermal
resistances of cylindrical layers by the corresponding spherical ones, (A= 4ar?.

R =R + Rsph.l + RW + Rsph_s +R

total conv,1

_ 1 +(r2_r-l)/)+(r3_r2)/)+(r4_rs)/)+ 1 (OC/W)
hA 4mrk  4arrk — 4arrk, hA

2 4

conv,?2

Example-1:

Hot water at an average temperature of 90°C is flowing through a 15 m section of a cast iron
pipe (k = 52 W/m-°C) whose inner and outer diameters are 4 cm and 4.6 cm, respectively. The
outer surface temperature of the pipe is 80°C with emissivity (&) of 0.7 and exposed to the cold
air at 10°C in the basement, with a heat transfer coefficient of 15 W/m? °C. The heat transfer
coefficient at the inner surface of the pipe is 120 W/m?-°C. Determine the rate of heat loss
from the hot water.

Rcombined

ain Rcond, pipe

MWW

conv
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Solution:
Assumptions 1 Heat transfer is steady since there is no indication of any change with time.

2 Heat transfer is one-dimensional since there is thermal symmetry about the center line and no
variation in the axial direction. 3 Thermal properties are constant.

A = 7D; L = 7(0.04 m)(15 m) = 1885 m?

A, = 7D, L = 7(0.046 m)(15 m) = 2168 m?

r1=0.04/2 =0.02m I, = 0.046/2 = 0.023m
R = ! _ L =0.0044°C/W
" hA (120W/m*.°C)(1.885m*)
_In(r,/r)  In(0.023/0.02) _ 0.00003°C/W

pipe 27k L 27(52W/m.°C)(15m)

The radiation heat transfer coefficient is determined to be:

hrad = ‘90-(T22 +Tsurr 2 )(TZ +Tsurr )
=(0.7)(5.67x10"® W/m?2.K*)[(353K)? + (283K)?](353 + 283) = 5.167 W/m?.K

T2=80°C+273 =353 K, Tsurr =10 °C +273 =283 K

Since the surrounding medium and surfaces are at the same temperature, the radiation and
convection heat transfer coefficients can be added and the result can be taken as the combined
heat transfer coefficient. Then,

Neombined = Nrad +Neony 2 = 5.167+15 = 20.167 W/m?.°C

1 1

heombined A (20.167 W/m?2 .°C)(2.168 m?)
Riga = Ri + Ryie + R, = 0.0044 +0.00003+0.0229 = 0.0273°C/W

0o =

=0.0229°C/W
pipe
The rate of heat loss from the hot water pipe then becomes

To1—Tw2  (90-10)°C

= =2927TW
R 0.0273°C/W

Q=

total
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Example-2 :

A 5m internal diameter spherical tank made of 1.5cm thick stainless steel (k= 15 W/m-°C) is
used to store iced water at 0°C. The tank is located in a room whose temperature is 30°C. The
walls of the room are also at 30°C. The outer surface of the tank is black (emissivity & =1) at
temperature of 5°C, and heat transfer between the outer surface of the tank and the surroundings
IS by natural convection and radiation. The convection heat transfer coefficients at the inner
and the outer surfaces of the tank are 80 W/m? - °C and 10 W/m? -°C, respectively. Determine
(a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that
melts during a 24 hrs. period. The heat of fusion of water at atmospheric pressure is

hir = 333.7 kd/kg.

Solution:
The inner and the outer surface areas of sphere are

A =% = z(5m)% =78.54m? A, =mMD,% = 7(5.03m)? =79.49m?
The radiation heat transfer coefficient can be determined from:
hrad = 80_0—22 +Tsurr2)(TZ +Tsurr)
=1(5.67x107° W/m? K*)[(273+5K)? + (273+ 30 K)?][(273+ 5 K) + (273 + 30 K)] =5.570 W/m*.K

1‘!\!\") = ‘:‘“Q(.

W Olu:dgluoo
71/"’ 6 o D= :lm\/") ‘a I:'i“"
N 3 OTO(,CQ D
ey -
AAAAAA A e I
chnv conv. & Rad.
1
0.015 2 5m
5= 2.515m
The individual thermal resistances are:
1 1 .
Reonvi = —— = 5 — =0.000159 °C/W
h;A (80 W/m?.°C)(78.54m?)
r,—r 2.515-2.
Ry = Reppere = -2 = (2515-2.5)m — 0.000013°C/W.
4zkrr, 4z (A5W/m.°C)(2.515m)(2.5m)
Reomvo = 1 _ > L — =0.00126 °C/W
® h,A (10W/m?.°C)(79.49m?)
Riag = 1 . L — =0.00226 °C/W
Nag A (5.57 W/m<.°C)(79.54 m*)
S S S S > Reqy = 0.000809°C/W
Ry  Reomo Rrag 0.00126  0.00226

Reotal = Reonv,i + Ry + Regy = 0.000159 +0.000013+0.000809 = 0.000981°C/W
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Then the steady rate of heat transfer to the iced water becomes

_T,-T,  (30-0)°C
R 0.000981°C/W

total

= 30.581 kJ/s

= 30,581 W =30.581kW

Q

(b) The total amount of heat transfer during a 24 hours period and the amount of ice that will
melt during this period are

Q = QAL = (30.581kJ/s)(24x 60x605) = 2.642x10° k]

6
_g: 2.642x10° kJ _ 7918 kg

Mice =1~ 333.7 kilkg
if '

H.W

Consider a large plane wall of thickness L = 0.3 m, thermal conductivity k =2.5 W/m - °C, and
surface area A = 12 m2. The left side of the wall at x = 0 is subjected to a net heat flux of
q°= 700 W/m? while the temperature at that surface is measured to be T1 = 80°C. Assuming
constant thermal conductivity and no heat generation in the wall, (a) express the differential
equation and the boundary conditions for steady one-dimensional heat conduction through the
wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential
equation, and (c) evaluate the temperature of the right surface of the wall at x = L.

Answer: (c) T=-4°C
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