1.7 Diffraction of Light Wave

Definition: is defined as the bending of waves as they travel around obstacles or pass through an aperture comparable to the wavelength of the waves.
$>$ For examples:

(a) Obstacle
(b) $\mathbf{a}>\lambda$

(c) $a \approx \lambda$

2.7 Diffraction by a Single Slit

- The central fringe is a bright fringe (central maximum).
- Other rays with angle θ and θ_{1} will produce minimum and maximum on both sides of the central maximum.

- The slit is spilt into two equal parts, AC and $\mathrm{CB} . \mathrm{A}, \mathrm{C}$ and B are new sources of secondary wavelets according to (Huygens principle).
- When the wave fronts from A, C and B superpose, Interference will occur at P.
- As AB is very small, thus AE is perpendicular to CP and $\mathrm{AP}=\mathrm{EP}$, and therefore the path difference at p between ray AP and CP is given

$$
\text { Path difference }=\mathrm{CE}=\frac{a}{2} \sin \theta_{1}
$$

- If the first minimum (first order) is at P , hence:

$$
\begin{gathered}
\text { Path difference }=\frac{a}{2} \sin \theta_{1}=\frac{\lambda}{2} \\
a \sin \theta_{1}=\lambda
\end{gathered}
$$

- If AB is split into 4 and 6 equal parts and so on, we get

Second minimum (2 ${ }^{\text {nd }}$ order minimum)

Example1:

A monochromatic light of wavelength $6 \times 10^{-7} \mathrm{~m}$ passes through a single slit of width $2 \times 10^{-6} \mathrm{~m}$. Find:

1. Calculate the width of central maximum:
i. in degrees
ii. in centimeters, on a screen 5 cm away from the slit
2. Find the number of minimum that can be observed.

Solution: $\quad \lambda=6 \times 10^{-7} \mathrm{~m}, \mathrm{a}=2 \times 10^{-6} \mathrm{~m}$

1. i $\quad a \sin \theta_{n}=n \lambda ; \quad n=1$

$$
\theta_{l}=17.46^{\circ}
$$

The width of central maximum; $2 \theta_{l}=2 \times 17.46^{\circ}=34.96^{\circ}$
ii.

$$
\begin{aligned}
& \text { Given } D=5 \times 10^{-2} \mathrm{~m} \\
& y_{n}=\frac{n \lambda D}{a} ; \quad n=1 \\
& \mathrm{y}_{1}=\frac{\lambda D}{a}=0.015 \mathrm{~m}
\end{aligned}
$$

The width of central maximum; $2 y_{l}=2 \times 0.015=0.030 \mathrm{~m}=3 \mathrm{~cm}$
2. $\quad a \sin \theta_{n}=n \lambda$

For maximum no. of $n, \theta=90^{\circ}$

$$
a \sin 90=n \lambda \longrightarrow n=\frac{a}{\lambda}=3.33
$$

Maximum order, $\mathrm{n}=3$
Thus the number of minimum that can be observed is 6 .

Howe works about lecture

Q1- A beam of a monochromatic light of wavelength 600 nm passes through a single slit of width $3 \times 10^{-3} \mathrm{~mm}$. A beam of light has a radius of 1.5 mm . Calculate the distance of the screen from the slit so that the radius of the central maximum is 2 times the radius of the light beam.
(a) 1 cm ,
(b) 1.5 cm ,
(c) 2 cm ,
(d) 2.5 cm

Q2- Is defined as the bending of waves as they travel around obstacles.
(a) Reflection,
(b) Interference,
(c) Diffraction,
(d) Refraction

Q3- The condition of diffraction is
(a) $\lambda \gg a$
(b) $\mathrm{a} \gg \lambda$
(c) $a=\lambda$
(d) none of them

Q4: In diffraction by a single slit the central fringe is a bright fringe
(a) Maximum
(b) minimum
(c) no value
(d) none of them

