Complex Fourier series

The complex exponential of Fourier series is obtained by substitution the exponential equivalent of the Cosine and Sine into the original form of Series

$$
\begin{gathered}
\mathrm{F}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \\
\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2} \text { and } \sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}
\end{gathered}
$$

$$
\cos \theta+j \sin \theta=e^{j \theta} \text { and } \cos \theta-j \sin \theta=e^{-j \theta}
$$

$$
1 / i=-i \quad ; i^{2}=-1
$$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \frac{e^{\frac{i n \pi t}{L}}+e^{\frac{-i n \pi t}{L}}}{2}+b_{n} \frac{\frac{e n \pi t}{L}-e^{\frac{-i n \pi t}{L}}}{2 i}\right)
$$

If we define

$$
C_{0}=\frac{a_{0}}{2} ; C_{n}=\frac{a_{n-i b_{n}}}{2} ; C_{-n}=\frac{a_{n+i b_{n}}}{2}
$$

The last series can be written

$$
\begin{aligned}
& f(x)=\sum_{-\infty}^{\infty} C_{n} e^{\frac{i n \pi x}{L}} \\
& C_{0}=\frac{a_{0}}{2}=\frac{1}{2 L} \int f(x) d x \\
& C_{n}=\frac{1}{2 L} \int f(x) e^{\frac{-i n \pi x}{L}} \\
& C_{-n}=\frac{1}{2 L} \int f(x) e^{\frac{i n \pi x}{L}}
\end{aligned}
$$

Example: Find the complex form of Fourier series whose definition in one period
$\mathrm{f}(\mathrm{t})=e^{-t} \quad-1<\mathrm{t}<1$
Sol:

$$
2 L=2 \rightarrow L=1
$$

$$
\begin{gathered}
C_{n}=\frac{1}{2 L} \int f(x) e^{\frac{-i n \pi x}{L}} \\
C_{n}=\frac{1}{2} \int e^{-t} e^{\frac{-i n \pi t}{L}} \\
=\frac{1}{2}\left(\frac{e^{-(1+i n \pi) t}}{-(1+i n \pi)}\right) \\
\frac{e . e^{i n \pi}-e^{-1} \cdot e^{-i n \pi}}{-2(1+i n \pi)} \\
e^{i \pi}=\cos \pi+\mathrm{i} \sin \pi=-1 \\
e^{i n \pi}=(-1)^{n} \\
C_{n}=\frac{(-1)^{n} \operatorname{Sinh1}}{(1+i n \pi)} \times \frac{1-i n \pi}{1-i n \pi} \\
C_{n}=\frac{1-i n \pi(-1)^{n} \operatorname{Sinh} 1}{\left(1+n^{2} \pi^{2}\right)}
\end{gathered}
$$

The expansion of $f(t)$ form can be written as:

$$
f(t)=\sum_{n=-\infty}^{\infty} \frac{1-i n \pi(-1)^{n} \operatorname{Sinh} 1 e^{i n \pi t}}{\left(1+n^{2} \pi^{2}\right)}
$$

The expansion can be converted into real trigonometric form

$$
\begin{gathered}
C_{n}=\frac{a_{n-i b_{n}}}{2} ; C_{-n}=\frac{a_{n+i b_{n}}}{2} \\
a_{n}=C_{n}+C_{-n} \\
b_{n}=i\left(C_{n}-C_{-n}\right) \\
a_{n}=\frac{(-1)^{n} 2 \sinh 1}{\left(1+n^{2} \pi^{2}\right)} \\
b_{n}=i\left[\frac{1-i n \pi(-1)^{n} \sinh 1}{\left(1+n^{2} \pi^{2}\right)}-\frac{1+i n \pi(-1)^{n} \sinh 1}{\left(1+n^{2} \pi^{2}\right)}\right]=\frac{2 n \pi(-1)^{n} \operatorname{Sinh} 1}{1+n^{2} \pi^{2}} \\
C_{0}=\frac{a_{0}}{2} ; a_{0}=2 C_{0}=\operatorname{Sinh} 1
\end{gathered}
$$

$$
\begin{aligned}
f(t)=\operatorname{Sinh} 1 & -2 \operatorname{Sinh} 1\left(\frac{\cos \pi t}{1+\pi^{2}}-\frac{\cos 2 \pi t}{1+4 \pi^{2}}+\cdots\right) \\
& -2 \pi \operatorname{Sinh} 1\left(\frac{\sin \pi t}{1+\pi^{2}}-\frac{2 \sin 2 \pi t}{1+4 \pi^{2}}\right)+\cdots
\end{aligned}
$$

H.W.

Q1) Find the complex form of Fourier series of the following functions:

1. $\mathrm{f}(\mathrm{t})=e^{t}$
$-1<t<1$
2. $f(t)=\left[\begin{array}{ll}1 & 0<t<1 \\ 0 & 1<t<2\end{array}\right]$

Applications of Fourier Series in Circuit Analysis

Effective Values and Power

The effective or rms value of the function

$$
\begin{gathered}
f(t)=\frac{1}{2} a_{0}+a_{1} \cos \omega t+a_{2} \cos 2 \omega t+\cdots+b_{1} \sin \omega t+b_{2} \sin 2 \omega t+\cdots \\
F_{\mathrm{rms}}=\sqrt{\left(\frac{1}{2} a_{0}\right)^{2}+\frac{1}{2} a_{1}^{2}+\frac{1}{2} a_{2}^{2}+\cdots+\frac{1}{2} b_{1}^{2}+\frac{1}{2} b_{2}^{2}+\cdots}=\sqrt{c_{0}^{2}+\frac{1}{2} c_{1}^{2}+\frac{1}{2} c_{2}^{2}+\frac{1}{2} c_{3}^{3}+\cdots}
\end{gathered}
$$

In general, we may write

$$
v=V_{0}+\sum V_{n} \sin \left(n \omega t+\phi_{n}\right) \quad \text { and } \quad i=I_{0}+\sum I_{n} \sin \left(n \omega t+\psi_{n}\right)
$$

With corresponding effective values of

$$
V_{\mathrm{rms}}=\sqrt{V_{0}^{2}+\frac{1}{2} V_{1}^{2}+\frac{1}{2} V_{2}^{2}+\cdots} \quad \text { and } \quad I_{\mathrm{rms}}=\sqrt{I_{0}^{2}+\frac{1}{2} I_{1}^{2}+\frac{1}{2} I_{2}^{2}+\cdots}
$$

The average power P follows from integration of the instantaneous power, which is given by the product of v and i :

$$
p=v i=\left[V_{0}+\sum V_{n} \sin \left(n \omega t+\phi_{n}\right)\right]\left[I_{0}+\sum I_{n} \sin \left(n \omega t+\psi_{n}\right)\right]
$$

Since v and i both have period T. The average may therefore be calculated over one period of the voltage wave:

$$
P=\frac{1}{T} \int_{0}^{T}\left[V_{0}+\sum V_{n} \sin \left(n \omega t+\phi_{n}\right)\right]\left[I_{0}+\sum I_{n} \sin \left(n \omega t+\psi_{n}\right)\right] d t
$$

Then the average power is

$$
P=V_{0} I_{0}+\frac{1}{2} V_{1} I_{1} \cos \theta_{1}+\frac{1}{2} V_{2} I_{2} \cos \theta_{2}+\frac{1}{2} V_{3} I_{3} \cos \theta_{3}+\cdots
$$

Where $\theta_{n}=\phi_{n}-\psi_{n}$ is the angle on the equivalent impedance of the network at the angular frequency n !

$$
\begin{gathered}
P=\frac{1}{2} V_{1} I_{1} \cos \theta_{1}=V_{\text {eff }} I_{\mathrm{eff}} \cos \theta \\
P=V_{0} I_{0}=V I \\
P=P_{0}+P_{1}+P_{2}+\cdots
\end{gathered}
$$

Example: A series RL circuit in which $\mathrm{R}=5 \Omega$ and $\mathrm{L}=20 \mathrm{mH}$ has an applied voltage as in Fig.1:

$$
v=100+50 \sin \omega t+25 \sin 3 \omega t(\mathrm{~V}), \text { with } \omega=500 \mathrm{rad} / \mathrm{s} .
$$

Find the current and the average power. Compute the equivalent impedance of the circuit at each frequency found in the voltage function. Then obtain the respective currents.

Fig. 1

At $\omega=0, Z_{0}=R=5 \Omega$ and

$$
I_{0}=\frac{V_{0}}{R}=\frac{100}{5}=20 \mathrm{~A}
$$

At $\omega=500 \mathrm{rad} / \mathrm{s}, \mathbf{Z}_{1}=5+j(500)\left(20 \times 10^{-3}\right)=5+j 10=11.15 / 63.4^{\circ} \Omega$ and

$$
\begin{equation*}
i_{1}=\frac{V_{1, \max }}{Z_{1}} \sin \left(\omega t-\theta_{1}\right)=\frac{50}{11.15} \sin \left(\omega t-63.4^{\circ}\right)=4.48 \sin \left(\omega t-63.4^{\circ}\right) \tag{A}
\end{equation*}
$$

At $3 \omega=1500 \mathrm{rad} / \mathrm{s}, \mathbf{Z}_{3}=5+j 30=30.4 / 80.54^{\circ} \Omega$ and

$$
\begin{equation*}
i_{3}=\frac{V_{3, \max }}{Z_{3}} \sin \left(3 \omega t-\theta_{3}\right)=\frac{25}{30.4} \sin \left(3 \omega t-80.54^{\circ}\right)=0.823 \sin \left(3 \omega t-80.54^{\circ}\right) \tag{A}
\end{equation*}
$$

The sum of the harmonic currents is the required total response; it is a Fourier series of the type (8).

$$
i=20+4.48 \sin \left(\omega t-63.4^{\circ}\right)+0.823 \sin \left(3 \omega t-80.54^{\circ}\right)
$$

This current has the effective value

$$
I_{\mathrm{eff}}=\sqrt{20^{2}+\left(4.48^{2} / 2\right)+\left(0.823^{2} / 2\right)}=\sqrt{410.6}=20.25 \mathrm{~A}
$$

which results in a power in the $5-\Omega$ resistor of

$$
P=I_{\mathrm{eff}}^{2} R=(410.6) 5=2053 \mathrm{~W}
$$

As a check, we compute the total average power by calculating first the power contributed by each harmonic and then adding the results.
At $\omega=0$:
$P_{0}=V_{0} I_{0}=100(20)=2000 \mathrm{~W}$
At $\omega=500 \mathrm{rad} / \mathrm{s}:$
$P_{1}=\frac{1}{2} V_{1} I_{1} \cos \theta_{1}=\frac{1}{2}(50)(4.48) \cos 63.4^{\circ}=50.1 \mathrm{~W}$
At $3 \omega=1500 \mathrm{rad} / \mathrm{s}:$
$P_{3}=\frac{1}{2} V_{3} I_{3} \cos \theta_{3}=\frac{1}{2}(25)(0.823) \cos 80.54^{\circ}=1.69 \mathrm{~W}$
Then,
$P=2000+50.1+1.69=2052 \mathrm{~W}$

Another Method

The Fourier series expression for the voltage across the resistor is

$$
\begin{gathered}
v_{R}=R i=100+22.4 \sin \left(\omega t-63.4^{\circ}\right)+4.11 \sin \left(3 \omega t-80.54^{\circ}\right) \quad(\mathrm{V}) \\
V_{R \text { eff }}=\sqrt{100^{2}+\frac{1}{2}(22.4)^{2}+\frac{1}{2}(4.11)^{2}}=\sqrt{10259}=101.3 \mathrm{~V}
\end{gathered}
$$

Then the power delivered by the source is $P=V_{R e f f}^{2} / R=(10259) / 5=2052 \mathrm{~W}$.

Example: Find the average power supplied to a network if the applied voltage and resulting current are

$$
\begin{align*}
& v=50+50 \sin 5 \times 10^{3} t+30 \sin 10^{4} t+20 \sin 2 \times 10^{4} t \quad(\mathrm{~V}) \tag{V}\\
& i=11.2 \sin \left(5 \times 10^{3} t+63.4^{\circ}\right)+10.6 \sin \left(10^{4} t+45^{\circ}\right)+8.97 \sin \left(2 \times 10^{4} t+26.6^{\circ}\right) \tag{A}
\end{align*}
$$

Sol:

The total average power is the sum of the harmonic powers:

$$
P=(50)(0)+\frac{1}{2}(50)(11.2) \cos 63.4^{\circ}+\frac{1}{2}(30)(10.6) \cos 45^{\circ}+\frac{1}{2}(20)(8.97) \cos 26.6^{\circ}=317.7 \mathrm{~W}
$$

Example: Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 2 and sketch the line spectrum

Fig. 2

Sol:

The wave shows no symmetry, and we therefore expect the series to contain both sine and cosine terms. Since the average value is not obtainable by inspection, we evaluate a_{0} for use in the term $\mathrm{a}_{0}=2$.

