Lecture Three

\checkmark Array operations

\pm	Matrix arithmetic operations
\pm	Array arithmetic operations
\pm	Solving linear equations

Array operations

MATLAB has two different types of arithmetic operations: matrix arithmetic operations and array arithmetic operations.

- Matrix arithmetic operations

MATLAB allows arithmetic operations:,$+-*^{*}$, and \wedge to be carried out on matrices. Thus,

* $\mathrm{A}+\mathrm{B}$ or $\mathrm{B}+\mathrm{A}$ is valid if A and B are of the same size
* $A * B$ is valid if A 's number of column equals B 's number of rows
* $\mathrm{A}^{\wedge} 2$ is valid if A is square and equals $\mathrm{A}^{*} \mathrm{~A}$
* $\alpha^{*} \mathrm{~A}$ or $\mathrm{A}^{*} \alpha$ multiplies each element of A by α

Adding matrices

Add two matrices together is just the addition of each of their respective elements. If A and B are both matrices of the same dimensions (size),
then $\mathrm{C}=\mathrm{A}+\mathrm{B}$ produces C , where the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column are just the addition of the elements (numbers) in the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of A and B .

Let's say that :

$$
A=\left[\begin{array}{ccc}
1 & 3 & 5 \\
7 & 9 & 11
\end{array}\right] \text {, and } B=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

so that the addition is :

$$
C=A+B=\left[\begin{array}{ccc}
3 & 7 & 11 \\
15 & 19 & 23
\end{array}\right]
$$

The MATLAB commands to perform these matrix assignments and the addition are:
$\mathrm{A}=[135 ; 7911] \mathrm{B}=\left[\begin{array}{lll}246 ; 81012\end{array}\right] \mathrm{C}=\mathrm{A}+\mathrm{B}$
Rule: A, B, and C must all have the same dimensions

Multiplication

Matrix multiplication, also known as matrix product and the multiplication of two matrices produces a single matrix. It is a type of binary operation. It is not an element-by-element multiplication. Rather, matrix multiplication is the result of the dot products of rows in one matrix with columns in another. Consider:

$$
\mathrm{C}=\mathrm{A} * \mathrm{~B}
$$

matrix multiplication gives the $\mathrm{i}^{\text {th }}$ row and $\mathrm{k}^{\text {th }}$ column spot in C as the scalar results of the dot product of the $\mathrm{i}^{\text {th }}$ row in A with the $\mathrm{k}^{\text {th }}$ column in B .

Example

Step 1: Dot Product (a 1-row matrix times a 1-column matrix) The Dot product is the scalar result of multiplying one row by one column

$$
\left[\begin{array}{lll}
2 & 5 & 3 \times 3
\end{array}\right]^{*}\left[\begin{array}{l}
6 \\
8 \\
7
\end{array}\right]_{3 \times 1}=2 * 6+5 * 8+3 * 7=73_{1 \times 1}
$$

DOT PRODUCT OF ROW AND COLUMN

Rule:

1) \# of elements in the row and column must be the same
2) 2) must be a row times a column, not a column times a row

Step 2: general matrix multiplication is taking a series of dot products each row in pre-matrix by each column in post-matrix.

$$
\left[\begin{array}{lll}
1 & 4 & 2 \\
9 & 3 & 7
\end{array}\right] *\left[\begin{array}{cc}
5 & 6 \\
8 \times 3 & 12 \\
10 & 11
\end{array}\right]_{3 \times 2}=\left[\begin{array}{ll}
1 * 5+4 * 8+2 * 10 & 1+6 * 4 * 12+2 * 11 \\
9 * 5+3 * 8+7 * 10 & 9 * 6+3 * 12+7 * 11
\end{array}\right]=\left[\begin{array}{cc}
57 & 76 \\
139 & 167
\end{array}\right]_{2 \times 2}
$$

- Array arithmetic operations

On the other hand, array arithmetic operations or array operations for short, are done element-by-element. The period character, ., distinguishes the array operations from the matrix operations. However, since the matrix and array operations are the same for addition $(+)$ and subtraction $(-)$, the character pairs (.+) and (.-) are not used. The list of array operators is shown below in Table.

Table 1: Array operators

$$
\begin{array}{l|l}
. * & \text { Element-by-element multiplication } \\
. / & \text { Element-by-element division } \\
. \sim & \text { Element-by-element exponentiation }
\end{array}
$$

If A and B are two matrices of the same size with elements $A=\left[a_{i j}\right]$ and $B=$ [b_{ij}], then the command produces another matrix C of the same size with elements $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{ij}}$. For example, using the same 3×3 matrices,

$$
\gg \mathrm{C}=\mathrm{A} . * \mathrm{~B}
$$

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
10 & 20 & 30 \\
40 & 50 & 60 \\
70 & 80 & 90
\end{array}\right]
$$

we have,

$$
\begin{array}{llll}
\gg \mathrm{C}=\mathrm{A} . * \mathrm{~B} \\
\mathrm{C}= & & \\
& 10 & 40 & 90 \\
& 160 & 250 & 360 \\
& 490 & 640 & 810
\end{array}
$$

To raise a scalar to a power, we use for example the command $10^{\wedge} 2$. If we want the operation to be applied to each element of a matrix, we use . ${ }^{\wedge} 2$. For example, if we want to produce a new matrix whose elements are the square of the elements of the matrix A, we enter

$$
\begin{array}{llll}
\gg \text { A.^2 } \\
\qquad \text { ans }= & \\
& 1 & 4 & 9 \\
& 16 & 25 & 36 \\
49 & 64 & 81
\end{array}
$$

The relations below summarize the above operations. To simplify, let's consider two vectors U and V with elements $\mathrm{U}=\left[\mathrm{u}_{\mathrm{i}}\right]$ and $\mathrm{V}=\left[\mathrm{v}_{\mathrm{j}}\right]$.

* U. $*$ V produces $\left[\mathrm{u}_{1} \mathrm{~V}_{1} \mathrm{u}_{2} \mathrm{~V}_{2} \ldots \mathrm{u}_{\mathrm{n}} \mathrm{V}_{\mathrm{n}}\right]$
* U./V produces $\left[u_{1} / v_{1} u_{2} / v_{2} \ldots u_{n} / v_{n}\right]$
* U. ${ }^{\wedge} V$ produces $\left[u 1^{v 1} u 2^{\mathrm{v} 2} \ldots \mathrm{un}^{\mathrm{vn}}\right]$

Table 2: Summary of matrix and array operations

Operation	Matrix	Array
Addition	+	+
Subtraction	-	-
Multiplication	$*$.$*$
Division	$/$.$/$
Left division	\backslash	.\backslash
Exponentiation	\sim	.

Solving linear equations

One of the problems encountered most frequently in scientific computation is the solution of systems of simultaneous linear equations. With matrix notation, a system of simultaneous linear equations is written

$$
\mathrm{Ax}=\mathrm{b}
$$

where there are as many equations as unknown. A is a given square matrix of order n, b is a given column vector of n components, and x is an unknown column vector of n components. In linear algebra we learn that the solution to $\mathrm{Ax}=\mathrm{b}$ can be written as $\mathrm{x}=\mathrm{A}-1 \mathrm{~b}$, where $\mathrm{A}-1$ is the inverse of A . For example, consider the following system of linear equations

$$
\begin{aligned}
& x+2 y+3 z=1 \\
& 4 x+5 y+6 z=1 \\
& 7 x+8 y=1
\end{aligned}
$$

The coefficient matrix A is

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \text { and the vector } b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

There are typically two ways to solve for x in MATLAB:

1. The first one is to use the matrix inverse, inv.

$$
\begin{aligned}
& \gg \mathrm{A}=[123 ; 456 ; 780] \\
& \gg \mathrm{b}=[1 ; 1 ; 1] \\
& \gg \mathrm{x}=\operatorname{inv}(\mathrm{A})^{*} \mathrm{~b} \\
& \mathrm{x}= \\
&-1.0000 \\
& 1.0000 \\
&-0.0000
\end{aligned}
$$

2. The second one is to use the backslash (\backslash) operator. The numerical algorithm behind this operator is computationally efficient. This is a numerically reliable way of solving system of linear equations by using a well-known process of Gaussian elimination.

$$
\begin{aligned}
& \gg \mathrm{A}=[123 ; 456 ; 780] \\
& \gg \mathrm{b}=[1 ; 1 ; 1] \\
& \gg \mathrm{x}=\mathrm{Alb} \\
& \mathrm{x}= \\
&-1.0000 \\
& 1.0000 \\
&-0.0000
\end{aligned}
$$

Ex. Solving a set of linear equations

$$
\begin{aligned}
& -6 x=2 y-2 z+15 \\
& 4 y-3 z=3 x+13 \\
& 2 x+4 y-7 z=-9
\end{aligned}
$$

First, rearrange the equations

$$
\begin{aligned}
& -6 x-2 y+2 z=15 \\
& -3 x+4 y-3 z=13 \\
& 2 x+4 y-7 z=-9
\end{aligned}
$$

Second, write the equations in a matrix form $\mathbf{A x}=\mathbf{b}$

The coefficient matrix is

$$
A=\left[\begin{array}{ccc}
-6 & -2 & 2 \\
-3 & 4 & -3 \\
2 & 4 & -7
\end{array}\right]
$$

$$
b=\left[\begin{array}{l}
15 \\
13 \\
-9
\end{array}\right]
$$

Third, solve the simultaneous equations in Matlab

$$
\gg \mathrm{x}=\mathrm{Alb}
$$

The Matlab answer is:

$$
\begin{array}{r}
-2.7273 \\
2.7727 \\
2.0909
\end{array}
$$

