Third Year; Engineering Analyiys Managemery Al-Mustaqbal University

$$
\bigcirc \hspace{-3.5ex} \bigcirc
$$

$$
a_0 = \frac{1}{\pi} \int_0^{\pi} V \sin \omega t \, d(\omega t) = \frac{V}{\pi} \left[-\cos \omega t \right]_0^{\pi} = \frac{2V}{\pi}
$$

Next we determine a_n :

$$
a_n = \frac{1}{\pi} \int_0^{\pi} V \sin \omega t \cos n\omega t \, d(\omega t)
$$

= $\frac{V}{\pi} \left[\frac{-n \sin \omega t \sin n\omega t - \cos n\omega t \cos \omega t}{-n^2 + 1} \right]_0^{\pi} = \frac{V}{\pi (1 - n^2)} (\cos n\pi + 1)$

With *n* even, $a_n = 2V/\pi(1 - n^2)$; and with *n* odd, $a_n = 0$. However, this expression is indeterminate for $n = 1$, and therefore we must integrate separately for a_1 .

$$
a_1 = \frac{1}{\pi} \int_0^{\pi} V \sin \omega t \cos \omega t \, d(\omega t) = \frac{V}{\pi} \int_0^{\pi} \frac{1}{2} \sin 2\omega t \, d(\omega t) = 0
$$

Now we evaluate b_n :

$$
b_n = \frac{1}{\pi} \int_0^{\pi} V \sin \omega t \sin n\omega t d(\omega t) = \frac{V}{\pi} \left[\frac{n \sin \omega t \cos n\omega t - \sin n\omega t \cos \omega t}{-n^2 + 1} \right]_0^{\pi} = 0
$$

Here again the expression is indeterminate for $n = 1$, and b_1 is evaluated separately.

$$
b_1 = \frac{1}{\pi} \int_0^{\pi} V \sin^2 \omega t \, d(\omega t) = \frac{V}{\pi} \left[\frac{\omega t}{2} - \frac{\sin 2\omega t}{4} \right]_0^{\pi} = \frac{V}{2}
$$

Then the required Fourier series is

$$
f(t) = \frac{V}{\pi} \left(1 + \frac{\pi}{2} \sin \omega t - \frac{2}{3} \cos 2\omega t - \frac{2}{15} \cos 4\omega t - \frac{2}{35} \cos 6\omega t - \cdots \right)
$$

The spectrum, **Fig. 3**, shows the strong fundamental term in the series and the rapidly decreasing amplitudes of the higher harmonics.

Sheet No 1

1.

Prove
$$
\int_{-L}^{L} \sin \frac{k \pi x}{L} dx = \int_{-L}^{L} \cos \frac{k \pi x}{L} dx = 0 \quad \text{if } k = 1, 2, 3,
$$

2. (a) Find the Fourier coefficients corresponding to the function

$$
f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}
$$
 Period = 10

(b) Write the corresponding Fourier series.

(c) How should f(x) be defined at $x = -5$; $x = 0$; and $x = 5$ in order that the Fourier series will Converge to $f(x)$ for $-5 \le x \le 5$?

(a) Period = $2L = 10$ and $L = 5$. Choose the interval c to $c + 2L$ as -5 to 5, so that $c = -5$. T

$$
a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{5} \int_{-5}^{5} f(x) \cos \frac{n\pi x}{5} dx
$$

\n
$$
= \frac{1}{5} \left\{ \int_{-5}^{0} (0) \cos \frac{n\pi x}{5} dx + \int_{0}^{5} (3) \cos \frac{n\pi x}{5} dx \right\} = \frac{3}{5} \int_{0}^{5} \cos \frac{n\pi x}{5} dx
$$

\n
$$
= \frac{3}{5} \left(\frac{5}{n\pi} \sin \frac{n\pi x}{5} \right) \Big|_{0}^{5} = 0 \quad \text{if } n \neq 0
$$

\nIf $n = 0$, $a_n = a_0 = \frac{3}{5} \int_{0}^{5} \cos \frac{0\pi x}{5} dx = \frac{3}{5} \int_{0}^{5} dx = 3$.
\n
$$
b_n = \frac{1}{L} \int_{c}^{c+2L} f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{5} \int_{-5}^{5} f(x) \sin \frac{n\pi x}{5} dx
$$

\n
$$
= \frac{1}{5} \left\{ \int_{-5}^{0} (0) \sin \frac{n\pi x}{5} dx + \int_{0}^{5} (3) \sin \frac{n\pi x}{5} dx \right\} = \frac{3}{5} \int_{0}^{5} \sin \frac{n\pi x}{5} dx
$$

\n
$$
= \frac{3}{5} \left(-\frac{5}{n\pi} \cos \frac{n\pi x}{5} \right) \Big|_{0}^{5} = \frac{3(1 - \cos n\pi)}{n\pi}
$$

Third Year; Engineering Analyiys Managemery Al-Mustaqbal University

 (b) The corresponding Fourier series is

$$
\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) = \frac{3}{2} + \sum_{n=1}^{\infty} \frac{3(1 - \cos n\pi)}{n\pi} \sin \frac{n\pi x}{5}
$$

$$
= \frac{3}{2} + \frac{6}{\pi} \left(\sin \frac{\pi x}{5} + \frac{1}{3} \sin \frac{3\pi x}{5} + \frac{1}{5} \sin \frac{5\pi x}{5} + \cdots \right)
$$

(c) Since $f(x)$ satisfies the Dirichlet conditions, we can say that the series converges to $f(x)$ at all continuity and to $\frac{f(x+0)+f(x-0)}{2}$ at points of discontinuity. At $x = -5$, 0, and 5, which of discontinuity, the series converges to $(3 + 0)/2 = 3/2$ as seen from the graph. If we redefifollows,

$$
f(x) = \begin{cases} 3/2 & x = -5 \\ 0 & -5 < x < 0 \\ 3/2 & x = 0 \\ 3 & 0 < x < 5 \\ 3/2 & x = 5 \end{cases}
$$
 Period = 10

then the series will converge to $f(x)$ for $-5 \le x \le 5$.

3.

Expand $f(x) = x^2$, $0 < x < 2\pi$ in a Fourier series if (a) the period is 2π , (b) the period is not specified.

Period = $2L = 2\pi$ and $L = \pi$. Choosing $c = 0$, we have

$$
a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos nx dx
$$

= $\frac{1}{\pi} \left\{ (x^2) \left(\frac{\sin nx}{n} \right) - (2x) \left(\frac{-\cos nx}{n^2} \right) + 2 \left(\frac{-\sin nx}{n^3} \right) \right\} \Big|_0^{2\pi} = \frac{4}{n^2}, \qquad n \neq 0$

If $n = 0$, $a_0 = \frac{1}{\pi} \int_0^{2\pi} x^2 dx = \frac{8\pi^2}{3}$.

$$
b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin nx \, dx
$$

= $\frac{1}{\pi} \left\{ (x^2) \left(-\frac{\cos nx}{n} \right) - (2x) \left(-\frac{\sin nx}{n^2} \right) + (2) \left(\frac{\cos nx}{n^3} \right) \right\} \Big|_0^{2\pi} = \frac{-4\pi}{n}$

Then
$$
f(x) = x^2 = \frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \left(\frac{4}{n^2} \cos nx - \frac{4\pi}{n} \sin nx\right).
$$

This is valid for $0 < x < 2\pi$. At $x = 0$ and $x = 2\pi$ the series converges to $2\pi^2$. (b) If the period is not specified, the Fourier series cannot be determined uniquely in general.

Lec1: Fourier Series Prof . Dr. Haider.J.Aljanaby 21

$$
\bigcirc \hspace{-1.5mm} \bigcirc
$$

Expand $f(x) = \sin x$, $0 < x < \pi$, in a Fourier cosine series.

۰)

Ans:

$$
f(x) = \frac{2}{\pi} - \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{(1 + \cos n\pi)}{n^2 - 1} \cos nx
$$

= $\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2x}{2^2 - 1} + \frac{\cos 4x}{4^2 - 1} + \frac{\cos 6x}{6^2 - 1} + \cdots \right)$

5. For the following graph find the Fourier series

Third Year; Engineering Analyiys Manustaqbal University

6. Find the trigonometric Fourier series for the square wave shown in Fig. below and plot the line spectrum.

Ans:

$$
f(t) = \frac{4V}{\pi} \sin \omega t + \frac{4V}{3\pi} \sin 3\omega t + \frac{4V}{5\pi} \sin 5\omega t + \cdots
$$

7. Find the exponential Fourier series for the triangular wave shown in Figs. 1 and 2 and sketch the line spectrum.

Sol: For Fig.1

In the interval $-\pi < \omega t < 0$, $f(t) = V + (V/\pi)\omega t$; and for $0 < \omega t < \pi$, $f(t) = V - (V/\pi)\omega t$. The wave is even and therefore the A_n coefficients will be pure real. By inspection the average value is $V/2$.

$$
\begin{split} \mathbf{A}_{n} &= \frac{1}{2\pi} \left\{ \int_{-\pi}^{0} [V + (V/\pi)\omega t] e^{-jn\omega t} \, d(\omega t) + \int_{0}^{\pi} [V - (V/\pi)\omega t] e^{-jn\omega t} \, d(\omega t) \right\} \\ &= \frac{V}{2\pi^{2}} \bigg[\int_{-\pi}^{0} \omega t e^{-jn\omega t} \, d(\omega t) + \int_{0}^{\pi} (-\omega t) e^{-jn\omega t} \, d(\omega t) + \int_{-\pi}^{\pi} \pi e^{-jn\omega t} \, d(\omega t) \bigg] \\ &= \frac{V}{2\pi^{2}} \bigg\{ \bigg[\frac{e^{-jn\omega t}}{(-jn)^{2}} \left(-jn\omega t - 1 \right) \bigg]_{-\pi}^{0} - \bigg[\frac{e^{-jn\omega t}}{(-jn)^{2}} \left(-jn\omega t - 1 \right) \bigg]_{0}^{\pi} \bigg\} = \frac{V}{\pi^{2}n^{2}} \left(1 - e^{jn\pi} \right) \end{split}
$$

For even *n*, $e^{j n \pi} = +1$ and $\Lambda_n = 0$; for odd *n*, $\Lambda_n = 2V/\pi^2 n^2$. Thus the series is

$$
f(t) = \dots + \frac{2V}{(-3\pi)^2} e^{-j3\omega t} + \frac{2V}{(-\pi)^2} e^{-j\omega t} + \frac{V}{2} + \frac{2V}{(\pi)^2} e^{j\omega t} + \frac{2V}{(3\pi)^2} e^{j3\omega t} + \dots
$$

The harmonic amplitudes

 $c_0 = \frac{V}{2}$ $c_n = 2|\mathbf{A}_n| = \begin{cases} 0 & (n = 2, 4, 6, ...) \\ 4V/\pi^2 n^2 & (n = 1, 3, 5, ...) \end{cases}$

Lec1: Fourier Series Prof . Dr. Haider.J.Aljanaby 23

For **Fig.2**

In the interval
$$
0 < \omega t < \pi
$$
, $f(t) = V \sin \omega t$; and from π to 2π , $f(t) = 0$. Then

$$
\begin{aligned} \mathbf{A}_n &= \frac{1}{2\pi} \int_0^\pi V \sin \omega t \, e^{-jn\omega t} \, d(\omega t) \\ &= \frac{V}{2\pi} \left[\frac{e^{-jn\omega t}}{(1-n^2)} \left(-jn \sin \omega t - \cos \omega t \right) \right]_0^\pi = \frac{V(e^{-jn\pi} + 1)}{2\pi (1-n^2)} \end{aligned}
$$

For even *n*, $A_n = V/\pi(1 - n^2)$; for odd *n*, $A_n = 0$. However, for *n* = 1, the expression for A_n becomes indeterminate. L'Hôpital's rule may be applied; in other words, the numerator and denominator are separately differentiated with respect to n , after which n is allowed to approach 1, with the result that $A_1 = -j(V/4).$

The average value is

$$
A_0 = \frac{1}{2\pi} \int_0^{\pi} V \sin \omega t \, d(\omega t) = \frac{V}{2\pi} \Big[-\cos \omega t \Big]_0^{\pi} = \frac{V}{\pi}
$$

Then the exponential Fourier series is

$$
f(t) = \dots - \frac{V}{15\pi} e^{-j4\omega t} - \frac{V}{3\pi} e^{-j2\omega t} + j\frac{V}{4} e^{-j\omega t} + \frac{V}{\pi} - j\frac{V}{4} e^{j\omega t} - \frac{V}{3\pi} e^{j2\omega t} - \frac{V}{15\pi} e^{j4\omega t} - \dots
$$

The harmonic amplitudes,

$$
c_0 = A_0 = \frac{V}{\pi} \qquad c_n = 2|\mathbf{A}_n| = \begin{cases} 2V/\pi(n^2 - 1) & (n = 2, 4, 6, \dots) \\ V/2 & (n = 1) \\ 0 & (n = 3, 5, 7, \dots) \end{cases}
$$