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Numerical Integration  

Numerical Integration Approximation. 

Integration is the process of measuring the area under a function plotted on a graph.  

Sometimes, the evaluation of expressions involving these integrals can become 

daunting, if not indeterminate. For this reason, a wide variety of numerical methods 

have been developed to find the integral.   

Here we discuss six different methods for approximating the value of a definite 

integral. Each method revolves around associating a definite integral with area under a 

curve. The first three use areas of rectangles, the fourth uses areas of trapezoids, and 

the final approximation technique uses areas of shapes that include a portion of a 

parabola.  

 

4.1 Left-Endpoint Approximation 

On each of the four subintervals shown below, we create a rectangle whose width is the 

length of the subdivision and whose height is determined by the function value at the 

left endpoint of each subdivision. 

 

 

The sum of the areas of the four rectangles represents our approximation for the area 

under the curve and therefore represents an approximation for the value of the definite 

integral: 

width: x, height: f(x3) = f(
3
/4) 

width: x, height: f(x0) = f(0) 

2

)( xexfy   

width: x, height: f(x1) = f(
1
/4) 

width: x, height: f(x2) = f(
1
/2) 
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This same sequence of steps can be generalized for left-endpoint approximation of the 

definite integral f (x)dx
a

b

  using n subdivisions: 
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4.2 Right-Endpoint Approximation 

Again we create rectangles whose widths are each the length of a subdivision, but here 

each height is determined by the function value at the right endpoint of each 

subinterval. 

 

 

The sum of the areas of these four rectangles represents a right-endpoint approximation 

for the area under the curve and therefore is an approximation for the value of the 

definite integral: 

width: x, height: f(x4) = f(1) 

2

)( xexfy   

width: x, height: f(x1) = f(
1
/4) 

width: x, height: f(x2) = f(
1
/2) 

width: x, height: f(x3) = f(
3
/4) 
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This same sequence of steps can be generalized for right-endpoint approximation of 

the definite integral 
b

a

dxxf )(  using n subdivisions: 
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4.3 Midpoint Approximation 

For a third time we create rectangles each of whose width is the length of the 

subdivision, but now each height is determined by the function value at the midpoint of 

each subdivision. 

 

 

The sum of the areas of these four rectangles represents a midpoint approximation for 

the area under the curve and therefore is another approximation for the value of the 

definite integral: 

width: x, height: f((x3+x4)/2) = f(
7
/8) 

2

)( xexfy   

width: x, height: f((x0+x1)/2) = f(
1
/8) 

width: x, height: f((x1+x2)/2) = f(
3
/8) 

width: x, height: f((x2+x3)/2) = f(
5
/8) 
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This same sequence of steps can be generalized for midpoint approximation of the 

definite integral 
b

a

dxxf )(  using n subdivisions: 
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4.4 Trapezoidal Rule 

Trapezoidal rule is based on the Newton-Cotes formula that if one approximates the 

integrand by an n
th
 order polynomial, then the integral of the function is approximated 

by the integral of that n
th
 order polynomial. Integrating polynomials is simple and is 

based on the calculus formula. The height of each trapezoid is the length of the 

subdivision. The two bases of each trapezoid correspond to the values of the function at 

the endpoints of the subinterval on which the trapezoid has been drawn. 

 

 

height: x, bases: f(
3
/4)and f(1) 

2

)( xexfy   
height: x, bases: f(0) and f(

1
/4) 

height: x, bases: f(
1
/4) and f(

1
/2) 

height: x, bases: f(
1
/2) and f(

3
/4) 
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It may be useful to remove the first of these trapezoids and rotate it into a more 

conventional orientation as we calculate its area. 

 

 

 

The sum of the areas of these four trapezoids represents an approximation for the area 

under the curve and therefore is one more approximation for the value of the definite 

integral: 
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This same sequence of steps can be generalized for trapezoid approximation of the 

definite integral f (x)dx
a

b

  using n subdivisions: 
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Single Segment Trapezoidal Rule 
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Multiple Segments Trapezoidal Rule  
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height:x 

base length: f(0) 

base length: f(
1
/4) 

Area = 
1
/2(x) (f(0) + f(

1
/4)) 

 



Numerical Analysis /Lec. 4      - 32 -                  

Third Class                                                  

Example 4.1  

Evaluate the integral 




1

0
21 x

dx
I  by trapezoidal rule dividing the interval [0, 1] into 

five equal parts.  

Solution 

2.0
5

01

5








x

n

 

x 0 0.2 0.4 0.6 0.8 1.0 

21

1

x
 1.0 0.98058 0.92848 0.85749 0.78087 0.70711 

From Trapezoidal Rule; 

88016.0

]70711.0)78087.085749.092848.098058.0(21[
2

2.0

)]())()()()((2)([
2

654321








 xfxfxfxfxfxf
x

I

 

 

Example 4.2 

Use Multiple-segment Trapezoidal Rule to find the area under the curve 
xe

x
xf




1

300
)(   

from 0x  to 10x . 

Solution 

Using two segments, we get 

5
2

010



x  

0
1

)0(300
)0(

0





e
f  

039.10
1

)5(300
)5(

5





e
f  

136.0
1

)10(300
)10(

10





e
f  

Area  )10()5(2)0(
2

5
fff   136.0)039.10(20

2

5
 535.50  
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So what is the true value of this integral? 59.246
1

300
10

0




dx
e

x
x

 

Making the relative true error  %100
59.246

535.5059.246



t %506.79  

Table: Values obtained using Multiple-segment Trapezoidal Rule for  

10

0
1

300
dx

e

x
x

 

n Approximate 

Value 
tE  t  

1 0.681 245.91 99.724% 

2 50.535 196.05 79.505% 

4 170.61 75.978 30.812% 

8 227.04 19.546 7.927% 

16 241.70 4.887 1.982% 

32 245.37 1.222 0.495% 

64 246.28 0.305 0.124% 

 

Example 4.3 

The average values of a function can be determined by:- 

12

2

1

C

TT

pdT

Cp

T

T

mh





 

Cp= 0.99403 +1.617×10
-4

T+9.7215×10
-8

T
2
 – 9.5838 × 10

-11
 T

3
 + 1.9520 × 10

-14
 T

4
 

Cp in KJ/(Kg K) 

Use this relationship to verity the average value of specific heat of dry air in the 

range from 300 K to 450 K: 

1) Analytically 

2) Numerically using five points Trapezoidal Rule 

Solution  

1) 
300450

T 10 × 1.9520 + T 10 × 9.5838 - T10×9.7215+T10×1.617+ 0.99403

450

300

414-311-28-4-



 dT

Cpmh  

 

300450

T 
5

10 × 1.9520
 + T 

4

10 × 9.5838
 -T

3

10×9.7215
+T

2

10×1.617
+T 0.99403

450

300

5
14-

4
11-

 3
8-

2
4-


mhCp  
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1.0637
300450

306.18-465.73   



mhCp  

2) 37.5
4

150-450   
T  

T 300 337.5 375 412.5 450 

Cp 1.0489 1.0562 1.0637 1.0711 1.0785 

1.0637
300450

1.0785)1.0711)1.0637(1.0562*2(1.0489*(37.5/2)   

Cp(5))Cp(4))Cp(3)(Cp(2)*2(Cp(1)*(dT/2)   

12












TT
Cpmh

 

%0%
1.0637

1.0637-1.0637
%

SolutionAnalytical

SolutionNumerical-SolutionAnalytical
=%Error  Realative   

 

4.5 Simpson’s Rule (1/3 Simpson’s Rule) 

The final approximation technique we develop in this section is called Simpson’s Rule. 

It is different from the first four methods because we are not creating polygons on each 

subinterval but rather we create a figure with a non-straight component to it. For this 

method, it is required that the number of subintervals be an even number. 

 

 

 

 

 

2

)( xexfy   

Another parabola is 

created that contains 

the points (x2,f(x2)), 

(x3,f(x3)), and (x4,f(x4)). 

A parabola is created that contains the 

points (x0,f(x0)), (x1,f(x1)), and (x2,f(x2)). 
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Simpson’s Rule uses pairs of subdivisions and creates over each pair a parabola that 

contains the points (x2i-2, f(x2i-2)), (x2i-1, f(x2i-1)), and (x2i, f(x2i)) for i going from 1 to 
n
/2. 

A shape is created using the resulting parabola, two vertical segments—one from 

(x2i-2,0) to (x2i–2, f(x2i-2)) and one from (x2i+2,0) to (x2i+2, f(x2i+2))—and the segment on 

the x-axis with endpoints (x2i-2,0) and (x2i+2,0). The area of the resulting shape—such as 

of the red-shaded figure above or the green-shaded figure above-is calculated using the 

formula   )()(4)(
3

1
12212   iii xfxfxfx . 

The sum of the areas of these shapes represents an approximation for the area under the 

curve and therefore is an approximation for the value of the definite integral: 
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This same sequence of steps can be generalized for the Simpson’s Rule approximation 

of the definite integral f (x)dx
a

b

  using n subdivisions: 
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Single Segment 1/3 Simpson’s Rule 
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Multiple Segment 1/3 Simpson’s Rule 
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Example 4.4 

Evaluate the integral 




8.0

0
21 x

dx
I  by 1/3 Simpson’s rule dividing the interval [0, 0.8] 

to 4 equal sub-intervals.  
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Solution 

2.0
4

08.0

4








x

n

 

x 0 0.2 0.4 0.6 0.8 

21

1

x
 1.0 0.91287 0.84515 0.79057 0.74536 

From Simpson’s 1/3
rd

 Rule 

))]()(4)(())()(4)([(
3

)( 432210

8.0

0

xfxfxfxfxfxf
x

dxxfI 


   

)]()(2)]()([4)([
3

42310 xfxfxfxfxf
x




  

   

68329.0

]74536.084515.02]79051.091287.0[40.1[
3

2.0




 

 

4.6 Simpson’s Rule (3/8 Simpson’s Rule) 

If we connect the points of the curve using a 3
rd

 order Lagrange polynomial, the area 

under the curve can be approximated by the following formula: 

)]()(3)(3)(2.....)(2
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Single Segment 3/8 Simpson’s Rule 
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Multiple Segment 3/8 Simpson’s Rule 
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Example 4.5 

Evaluate the integral of the following tabular data with  

(a) The trapezoidal rule. 

(b) Simpson’s rules. 

x 0 0.1 0.2 0.3 0.4 0.5 

F(x) 1 8 4 3.5 5 1 

Solution 

(a) Trapezoidal rule (n = 5):   

15.2]1)55.348(21[
2

1.0
I            

(b) Simpson’s rules (n = 5): 

377083.214375.1233333.1]1)55.3(34[
8

3
1.0]4)8(41[

3

1.0
I  

 

Example 4.6 

The volume of is given by following expression: 

  


9.0

0

0

)1( A

A

o

A

xk

xd

CA

F
V   

with 17 min)/6500exp(107.2  Tk and    
75.14335.120

19000
325




A

A

x

x
T using 

 0AF = 1500mol/min,  0CA =2.5 mol L
-1

 

Calculate the volume of the reactor using Simpsons rule with five points (4 steps). 

Solution 

Xa T k 
)1(

1

Axk 
 

0 325.0000 0.0557 17.9691 

0.2250 350.0251 0.2325 5.5491 

0.4500 368.2020 0.5816 3.1263 

0.6750 382.0035 1.1005 2.7958 

0.9000 392.8396 1.7597 5.6827 

 

L 3661.4 

)3063.75947.3*40195.4*21346.7*41031.23(*)3/225.0(*)5.2/1500(



V
 

 

A Matlab program for solving example 4.5 is listed in Table 4.1.  
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Table (4.1) Matlab code and results for solution example (4.5)  

Matlab 

Code 

Xa=0:0.225:0.9 

T=325+(19000*Xa)./(120.35*Xa+143.75) 

k=2.7e7*exp(-6500./T) 

f=1./(k.*(1-Xa)) 

V=(1500/2.5)*(0.225/3)*(f(1)+4*f(2)+2*f(3)+4*f(4)+f(5)) 

Results 

Xa = 

         0    0.2250    0.4500    0.6750    0.9000 

T = 

  325.0000  350.0251  368.2020  382.0035  392.8396 

k = 

    0.0557    0.2325    0.5816    1.1005    1.7597 

f = 

   17.9691    5.5491    3.1263    2.7958    5.6827 

V = 

   2.8478e+03 

 


