Digital Signal Processing

Basic Signals

1. Unit step function.

The unit step signal has amplitude of '1' for positive values of independent variable. And it has amplitude of '0' for negative values of independent variable.

2. Unit Ramp Function.

Parameter	CT unit impulse signal r (t)	DT unit ramp <mark>signal</mark> r (n)
Definition	It is linearly growing function for positive values of independent variable.	The amplitude of every sample increases linearly with its number(n) for positive values of 'n'
Mathematical representation	$r(t) = \begin{cases} t & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$ $= t u(t)$ Since $u(t) = 1 \text{ for } t \ge 0 \text{ and}$ $u(t) = 0 \text{ for } t < 0$	$r(n) = \begin{cases} n & \text{for } n \ge 0\\ 0 & \text{for } t < 0 \end{cases}$ = $nu(n)$ Since $u(n) = 1$ for $n \ge 0$ and $u(n) = 0$ for $n < 0$ $r(n) = \{0, 1, 2, 3, 4, 5, \dots\}$
Waveform	r(t) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	r(n) 4 3 2 1 2 3 4 3 4 1 1 1 1 1 1 1 1 1 1

- The unit ramp function is the integral of the unit step function.
- It is called the unit ramp function because for positive t, its slope is one amplitude unit per time.

3. Unit Impulse or Delta Function

Parameter	Unit impulse signal δ(t)	Unit sample <mark>signal</mark> δ (n)
Definition	Area under unit impulse approaches '1' as its width approaches zero. Thus it has zero value everywhere except t = 0.	Amplitude of unit sample is '1' at n = 0 and it has zero value at all other values of n.
Mathematical representation	$\int_{-\infty}^{\infty} \delta(t) dt = 1 \text{ and } t \to 0$ $\delta(t) = 0 \text{for } t \neq 0$	$\delta(n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}$ or $\delta(n) = \{0, 0, 0, 1, 0, 0, 0\}$
Waveform	δ(t) 0 n	$\delta(t)$ 1ϕ n 0

Properties of the Impulse Function

The Shifting Property

$$\int_{-\infty}^{\infty} g(t) \delta(t-t_0) dt = g(t_0)$$

The Replication Property

 $g(t) \otimes \delta(t) = g(t)$

4. Sinusoidal & Exponential Signals

Sinusoids and exponentials are important in signal and system analysis because they arise naturally in the solutions of the differential equations.

• Sinusoidal Signals can expressed in either of two ways :

cyclic frequency form- A sin $2\Pi f_o t = A \sin(2\Pi/T_o)t$

radian frequency form- A sin $\omega_0 t$

 $\omega_o = 2\Pi f_o = 2\Pi/T_o$

 T_o = Time Period of the Sinusoidal Wave

Sinusoidal & Exponential Signals

x(t) = A sin (2Π $f_o t$ + θ) = A sin ($\omega_o t$ + θ)

 θ = Phase of sinusoidal wave A = amplitude of a sinusoidal or exponential signal f_o = fundamental cyclic frequency of sinusoidal signal ω_o = radian frequency

Real Exponential Signals and damped Sinusoidal

Discrete Time Exponential and Sinusoidal Signals

DT signals can be defined in a manner analogous to their continuous-time counter part

x[n] = A sin (2Πn/N_o+θ) = A sin (2ΠF_on+θ)

Discrete Time Sinusoidal Signal

Discrete Time Exponential Signal

 $x[n] = a^n$

n = the discrete time

A = amplitude

 θ = phase shifting radians,

N_o = Discrete Period of the wave

 $1/N_0 = F_o = \Omega_o/2 \Pi$ = Discrete Frequency

Discrete Time Sinusoidal Signals

5. Rectangular Pulse or Gate Function

$$\operatorname{rect}\left(\frac{t}{\tau}\right) = \begin{cases} 1 & |t| \le \tau/2\\ 0 & |t| > \tau/2 \end{cases}$$

$$\operatorname{rect}\left(\frac{k}{2N+1}\right) = \begin{cases} 1 & |k| \le N\\ 0 & |k| > N \end{cases}$$

6. Sinc Function

12