

Analog Electronics

Prof. Dr. Ehssan Al-Bermany

ihsan.zia@uomus.edu.iq

1st semester

Chapter 4

Transistor

Lecture 9

© Prof. Dr. Ehssan Al-Bermany.

2

Transistor Currents

The conventional current flows toward the arrow on the emitter terminal. The emitter current (I_E) is the sum of the collector current (I_C) and the small base current (I_B) .

That is, IE = IC + IB

IB is **very small** compared to **IE or IC**. The capital-letter subscripts indicate DC values.

The voltage drop between the base and emitter is V_{BE} , whereas the voltage drop between the **collector and base** is called V_{CB} .

BJT Characteristics and Parameters

Two important **parameters**, β_{DC} (DC current gain) and α_{DC} are used to analyze a BJT circuit.

When a transistor is connected to DC bias voltages, as shown in Figure below for **both** npn and pnp types,

V_{BB} forward-biases the base-emitter junction, and V_{CC} reverse-biases the base-collector junction.

Figures of transistor DC bias circuits.

The **collector current** is directly **proportional** to the **base current**.

 $I_C \propto I_B$ The β_{DC} of a transistor is the **ratio** of the DC **collector current** (I_C) to the **DC base** current (I_R).

This equation explains the amplification of current. The ratio of the **DC** collector current (I_C) to the **DC** emitter current (IE) is the (α_{DC}).

α_{DC} is always less than 1

$$\beta_{DC} = \frac{I_C}{I_B}$$

$$\alpha_{\rm DC} = \frac{I_{\rm C}}{I_{\rm E}}$$

Example

Determine the dc current gain β_{DC} and the emitter current IE for a transistor where $I_B=50\mu A$ and $I_C=3.65$ mA.

Solution

$$\beta_{DC} = \frac{I_C}{I_B} = \frac{3.65 \text{ mA}}{50 \mu \text{A}} = 73$$

 $I_E = I_C + I_B = 3.65 \text{ mA} + 50\mu \text{A} = 3.70 \text{ mA}$

BJT Circuit Analysis

Consider the basic transistor bias circuit configuration in the Figure below. Three transistor DC currents and three DC voltages can be identified.

- **I**_B: **DC** base current
- **I**_E: **DC** emitter current
- **I**_C: **DC** collector current
- **V**_{BE}: **DC** voltage across the base-emitter junction
- V_{CE} : DC voltage across collector-emitter junction
- **V**_{CB}: **DC** voltage across collector-base junction

Figure 4: Transistor currents and voltages.

When the base-emitter junction is forward-biased,

It is like a forward-biased diode and has a forward voltage drop of $V_{BE} \cong 0.7 \text{ V}$

The voltage at the collector concerning the grounded emitter is

 $V_{CE} = V_{CC} - I_C R_C$ ($I_C R_C = V_{RC}$) The current across I_B is

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} \qquad (I_{B}R_{B} = V_{R_{B}})$$

The voltage across the reverse-biased collector-base junction is $V_{CB} = V_{CE} - V_{BE}$

© Prof. Dr. Ehssan Al-Bermany.

7

Example: Determine I_B , I_C , I_E , V_{BE} , V_{CE} , and V_{CB} in the circuit of the following Figure. The transistor has a $\beta_{DC} = 150$.

R_B

 $10 k\Omega$

Solution:

VBE≅ 0.7 V, Calculate the base, collector, and emitter currents as follows:

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{5 \,\mathrm{V} - 0.7 \,\mathrm{V}}{10 \,\mathrm{k}\Omega} = 430 \,\mu\mathrm{A}$$
$$I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (150)(430 \,\mu\mathrm{A}) = 64.5 \,\mathrm{mA}$$
$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 64.5 \,\mathrm{mA} + 430 \,\mu\mathrm{A} = 64.9 \,\mathrm{mA}$$

Solve for V_{CE} and V_{CB} .

 $V_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C} = 10 \, \text{V} - (64.5 \, \text{mA})(100 \, \Omega) = 10 \, \text{V} - 6.45 \, \text{V} = 3.55 \, \text{V}$

$$V_{\rm CB} = V_{\rm CE} - V_{\rm BE} = 3.55 \,\mathrm{V} - 0.7 \,\mathrm{V} = 2.85 \,\mathrm{V}$$

Since the collector is at a higher voltage than the base, the CB junction is reverse-biased.

Collector Characteristic Curves

The collector characteristic curves show three modes of operation of the transistor. The collector current I_C variation varies with the V_{CE} for a specified value of base current I_B .

Assume that V_{BB} is set to produce a certain value of I_B , V_{CC} is zero, and V_{CE} is zero. As V_{CE} is increased, IC increases until I_B becomes constant. When both BE, and BC junctions are forward biased, and the transistor is in the saturation region.

In saturation, an increase in base current does not affect the collector current, and the relation $IC=\beta_{DC}I_B$ is no longer valid.

$$I_{C_{(SAT)}} = \frac{V_{CC} - V_{CE_{(SAT)}}}{R_C}$$

The transistor current is maximum, and the voltage across the collector is minimum for a given load.

Figure : Base-emitter and base-collector junctions are forward-biased.

When V_{CE} is increased further and exceeds 0.7 V, the base-collector junction becomes reverse-biased, and the transistor goes into its operation's active, or linear, region.

 I_C levels off and remains essentially constant for a given value of I_B as V_{CE} continues to increase. The value of I_C is determined only by the relationship expressed as $I_C = \beta_{DC} I_B$.

A family of collector characteristic curves is produced when I_C versus V_{CE} is plotted for several values of I_B , as illustrated in Figure below. It can be read from the curves. The value of β_{DC} is nearly the same wherever it is read in the active region. In a **BJT**, the cutoff is the condition of no base current ($I_B=0$), which results in only an extremely small leakage current (I_{CEO}) in the collector circuit.

The subscript CEO represents collector to emitter with the base open. For practical work, this current is assumed to be zero. In **cutoff**, **neither the BE** junction nor the BC junction is forward-biased.

Figure: Cutoff: Base-emitter and base-collector junctions are reverse-biased.

Example:

Determine whether or not the transistor in the following figure is in saturation. Assume $V_{CE}(sat) = 0.2V$.

 $R_{\rm C} \ge 1.0 \, {\rm k}\Omega$

 $10 k\Omega$

 $\beta_{DC} = 50$

First, determine $I_{C(sat)}$.

$$I_{\rm C(sat)} = \frac{V_{\rm CC} - V_{\rm CE(sat)}}{R_{\rm C}} = \frac{10 \,\text{V} - 0.2 \,\text{V}}{1.0 \,\text{k}\Omega} = \frac{9.8 \,\text{V}}{1.0 \,\text{k}\Omega} = 9.8 \,\text{mA}$$

Now, see if I_B is large enough to produce $I_{C(sat)}$.

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{3 \,\text{V} - 0.7 \,\text{V}}{10 \,\text{k}\Omega} = \frac{2.3 \,\text{V}}{10 \,\text{k}\Omega} = 0.23 \,\text{mA}$$
$$I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (50)(0.23 \,\text{mA}) = 11.5 \,\text{mA}$$

This shows that with the specified β_{DC} , this base current can produce an I_C greater than I_C (sat). Therefore, the transistor is saturated.

The BJT as a Switch

A BJT can be used as a switching device in logic circuits to turn on or off the current to a load. As a switch, the transistor is normally in either cutoff (load is OFF) or saturation (load is ON).

Figure: Switching action of an ideal transistor.