Cryptography and Network Security

Chapter 2

Classical Encryption
Techniques II

Prof. Mahmood Kh. Ibrahem

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

M	0	N	A	R
C	Н	Y	В	D
Е	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	X	Z

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair
 - 5. Decrypting of course works exactly in reverse. Can see this by working the example pairs shown, backwards.

Playfair Encryption

Plain Text: "instrumentsz"
Encrypted Text: gatlmzclrqtx

Encryption:
i -> g
n -> a

s -> t

t -> 1

r -> m

u -> z

m -> c

e -> 1

n -> r

t -> q
October 16, 2023

Playfair Encryption

in:

M	0	Ν	Α	R
С	Н	Υ	В	D
Е	F	G	_	K
L	Р	Q	S	Т
U	٧	W	X	Z

st:

M	0	Ν	Α	R
С	Ξ	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	٧	W	X	Z

ru:

М	0	Ζ	Α	R
С	Ξ	Υ	В	D
Е	F	G	1	K
L	Р	Q	S	Т
U	V	W	X	Z

me:

М	0	N	Α	R
С	Ξ	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	٧	W	X	Z

nt:

M	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	٧	W	Χ	Z

SZ:

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	V	W	X	Z

Playfair Decryption

```
Plain Text: "gatlmzclrqtx"
Decrypted Text: instrumentsz
Decryption: (red)-> (green)
 ga -> in
tl -> st
mz -> ru
cl \rightarrow me
rq -> nt
tx \rightarrow sz
```

Playfair Decryption

in:

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G		K
L	Р	Q	S	Т
U	٧	W	X	Z

st:

M	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I	K
L	Р	Q	S	Т
U	V	W	Х	Z

ru:

M	0	Z	Α	R
С	Н	Υ	В	D
Е	F	G	1	K
L	Р	Q	S	Т
U	٧	W	X	Z

me:

М	0	Z	Α	R
С	Η	Υ	В	D
Е	F	G	1	K
L	Р	Q	S	Т
U	٧	W	X	Z

nt:

M	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	1	K
L	Р	Q	S	Т
U	٧	W	X	Z

SZ:

М	0	N	Α	R
С	Η	Υ	В	D
Е	F	G	1	K
L	Р	Q	S	Т
U	٧	W	Х	Z

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
 - eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Polyalphabetic Ciphers

It is a substitution ciphers improve security using multiple cipher alphabets make cryptanalysis harder with more alphabets to guess and flatten frequency distribution use a key to select which alphabet is used for each letter of the message use each alphabet in turn repeat from start after end of key is reached $c=E(m)=(m+ki) \mod n$ for i=1,2,, d $m = D(c) = (c - ki) \mod n$ for i=1,2,...,d

Polyalphabetic Ciphers

write the plaintext out write the keyword repeated above it use each key letter as a caesar cipher key encrypt the corresponding plaintext letter eg using keyword deceptive

key: deceptive deceptive deceptlve
plaintext: we ared is covere dsave yourself
ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Vegener Ciphers

```
m: codebreaking
  2143411740108136
k: radioradior
   17 0 3 8 14 17 0 3 8 14 17 0
m+k 19146 12158 4 3 13 224 6
     TOGMPIEDSWEG
c-k
  2 14 3 4 1 17 4 0 10 8 13 6
m: codebreak
```

Vegener Ciphers

Plaintext

Ciphertext

-	A	В	C	D	E	F	G	H	Ι	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
A	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	8/	T	U	V	W	X	Y	Z
В	В	С	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	_ X	Y	Z	A
С	С	D	E	F	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	T/	U	V	W	X	Y	Z	A	В
D	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	Т	NO.	V	W	X	Y	Z	A	В	С
E	E	F	G	H	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D
F	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z	A	В	С	D	E
G	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F
H	H	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G
I	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н
J	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I
K	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J
L	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	Ι	J	K
M	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L
N	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	M
0	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	M	N
P	P	Q	R	S	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
Q	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	M	N	О	P
R	R	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	M	N	О	P	Q
S	S	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R
Т	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
U	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T
V	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U
W	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V
X	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
Y	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X
Z	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y

(e)

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- •eg. write message out as:

 mematrhtgpry

 etefeteoaat
- giving ciphertext

 MEMATRHTGPRYETEFETEOAAT

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message "meet me after the toga party" as depth 2:

```
mematrhtgpry
etefeteoaat
```

• ciphertext: MEMATRHTGPRYETEFETEOAAT

depth 3:

```
mtaehopt
emfregay
eetttar
```

Ciphertext: MTAEHOPTEMFREGAYEETTTAR

Rail Fence Decryption

depth 2:

Split ciphertext into 2 halves

Select one character from each half & concatenate them together

Continue until ciphertext is finished ciphertext: MEMATRHTGPRYETEFETEOAAT

Plaintext:

MEETMEAFTERTHETOGAPARTY

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
 - $C = S(m) \cdot P(m') = P(S(m))$
- this is bridge from classical to modern ciphers

Row Transposition Ciphers

a more complex transposition, write letters of message out in rows over a specified number of columns, then reorder the columns according to some key before reading off the rows.

m: attackposponeduntiltwoam

Key: $f_e[4312567]$

$$f_d = [3421567]$$

```
Key: 1234567
Plaintext: attackp
ostpone
duntilt
woam***
```

Ciphertext: ATATCKPPTOSONETNDUILTMAWO***

Row Transposition Decryption

Decryption: Generate reverse function for decryption: then reorder the columns according to decryption key before reading off the rows

Ciphertext: ATATCKPPTOSONETNDUILTMAWO***

Key: $f_e[4312567]$

 $f_d = [3421567]$

```
3 4 2 1 5 6 7
a t t a c k p
o s t p o n e
d u n t i l t
w o a m * * *
```

Column Transposition Ciphers

- 1. Fill the matrix,
- 2. Rearrange the matrix columns as in key (Fe)
- 3. Read encrypted message by columns

"RENAISSANCE" using 3x4 figure, using [2 4 1 3] scheme.

f E[2413]

f D[3142]

```
1 2 3 4 2 4 1 3 R E N A E A R N I S S A I S N C E * C * N E
```

Ciphertext: ESCAA*RINNSE.

Column Transposition Decrtption

Generate reverse function for decryption:

Ciphertext: ESCAAXRINNSE

Ciphertext: RENAISSANCE*

Hill Cipher

Each letter is represented by a number modulo 26. Though this is not an essential feature of the cipher, this simple scheme is often used:

To encrypt a message, each block of n letters (considered as an n-component <u>vector</u>) is multiplied by an invertible $n \times n$ <u>matrix</u>, against <u>modulus</u> 26. To decrypt the message, each block is multiplied by the inverse of the matrix used for encryption.

Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2 1	2	2	2	2 5

We have to encrypt the message 'ACT' (n=3). The key is 'GYBNQKURP', which in the form of an nxn matrix looks like below:

Hill Cipher

Message = ACT

Key = GYBNQKURP

0 2 19

6 24 1 13 16 10 20 17 15

Ciphertext

Plaintext

$$\begin{bmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 19 \end{bmatrix} = \begin{bmatrix} 67 \\ 222 \\ 319 \end{bmatrix} \equiv \begin{bmatrix} 15 \\ 14 \\ 7 \end{bmatrix} \pmod{26} = POH$$

$$\begin{bmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{bmatrix} \begin{bmatrix} 15 \\ 14 \\ 7 \end{bmatrix} \equiv \begin{bmatrix} 260 \\ 574 \\ 539 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 2 \\ 19 \end{bmatrix} \pmod{26} = ACT$$

IntelliPaat

One-Time pad

the **one-time pad** (**OTP**) is an <u>encryption</u> technique that cannot be <u>cracked</u>, but requires the use of a single-use <u>pre-shared key</u> that is larger than or equal to the size of the message being sent. In this technique, a <u>plaintext</u> is mixed with a random secret <u>key</u> (also referred to as *a one-time pad*). Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using <u>modular addition</u>. Must met the conditions:

- 1. The key must be at least as long as the plaintext.
- 2. The key must be random.
- 3. The key must never be reused in whole or in part.
- 4. The key must be kept completely <u>secret</u> by the communicating parties

One-Time pad

One-Time pad

One-time pad

SOURCE: ANDREW FROEHLICH

©2022 TECHTARGET. ALL RIGHTS RESERVED TechTarget