

Refrigeration and Air conditioning Engineering. 3rd year – refrigeration and Air conditioning Course Duct design Lecture -6-

Duct design

An objective of duct system design is to provide a system that, within prescribed limits of velocities, noise intensity, and space available for ducts, efficiently transmits the required flow rate of air to each space while maintaining a proper balance between investment and operating cost. Commercial, industrial, and residential air duct system design must consider the followings:

- (1) Space availability
- (2) Space air diffusion
- (3) Noise levels
- (4) Duct leakage,
- (5) Duct heat gains and losses
- (6) Balancing
- (7) Fire and smoke control
- (8) Initial investment cost,
- (9) System operating cost.

Head and Pressure

velocity pressure, calculated by Equation (1), is

$$p_v = \frac{1}{2} \rho C^2$$
(1)

 p_v = Velocity pressure, Pa

C = Fluid mean velocity, m/s

 ρ =Density air at standard conditions (1.2 kg/m3)

Velocity is calculated by Equation (2).

$$C = \frac{V}{A} \qquad \dots (2)$$

Where V = Air flow rate, m3/s

A = cross-sectional area of duct, m2

$$A=\frac{\pi}{4}D^2$$

Head and Pressure

Total Pressure: Total pressure is the sum of static pressure and velocity pressure:

$$p_t = p_s + p_v$$

 p_t =total pressure, Pa

 p_s =static pressure, Pa

 p_v = velocity pressure, Pa

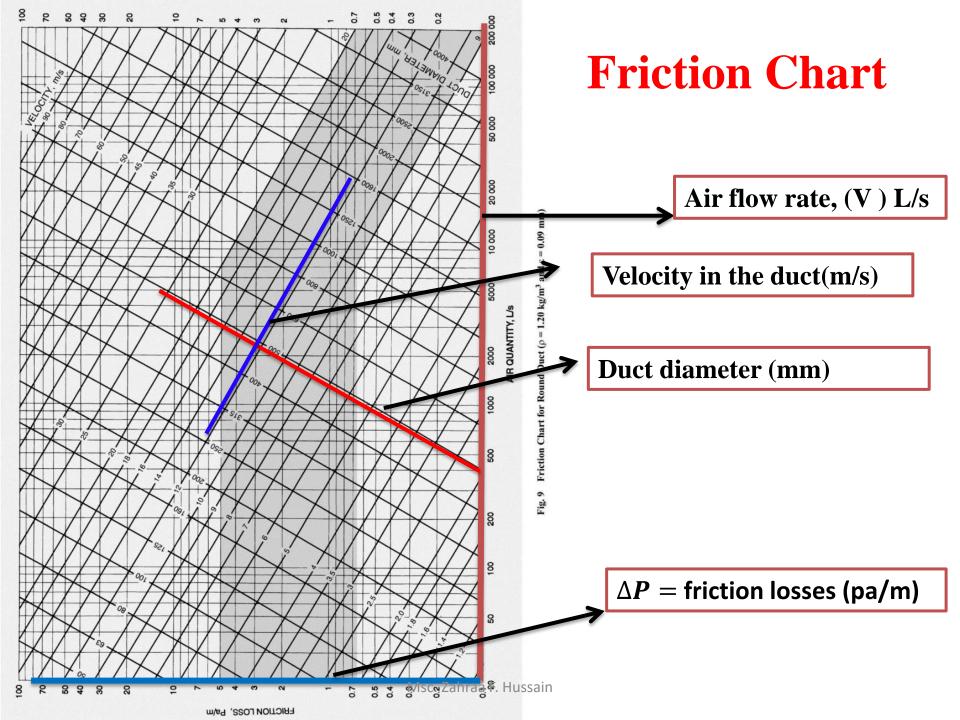
To determine the fan total pressure requirement for a system, use the following equation:

$$p_t = \sum_{iE,F_{up}} \Delta p_{t,i} + \sum_{iE,F_{dn}} \Delta p_{t,i}$$

For I = 1,2,.... $n_{up} + n_{dn}$

 F_{up} and F_{dn} = sets of duct sections upstream and downstream of a fan.

FLUID RESISTANCE

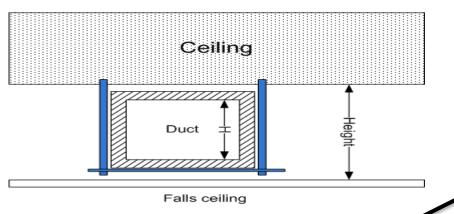

Duct system losses The two types of losses are

- (1) friction losses :Friction losses occur along the entire duct length.
- (2) dynamic losses :result from flow disturbances caused by duct mounted equipment and fittings that change the airflow path's direction and/or area. These fittings include entries, exits, elbows, transitions, and junctions.

Friction Chart

The friction chart This chart is based on standard air flowing through round galvanized ducts with beaded slip couplings on 1220 mm centers, equivalent to an absolute roughness of 0.09 mm. Changes in barometric pressure, temperature, and humidity affect air density, air viscosity, and Reynolds number. No corrections to Figure 1 are needed for:

- (1) duct materials with a medium smooth roughness factor,
- (2) temperature variations in the order of ± 15 K from 20°C,
- (3) elevations to 500 m,
- and (4) duct pressures from -5 to +5 kPa relative to the ambient pressure

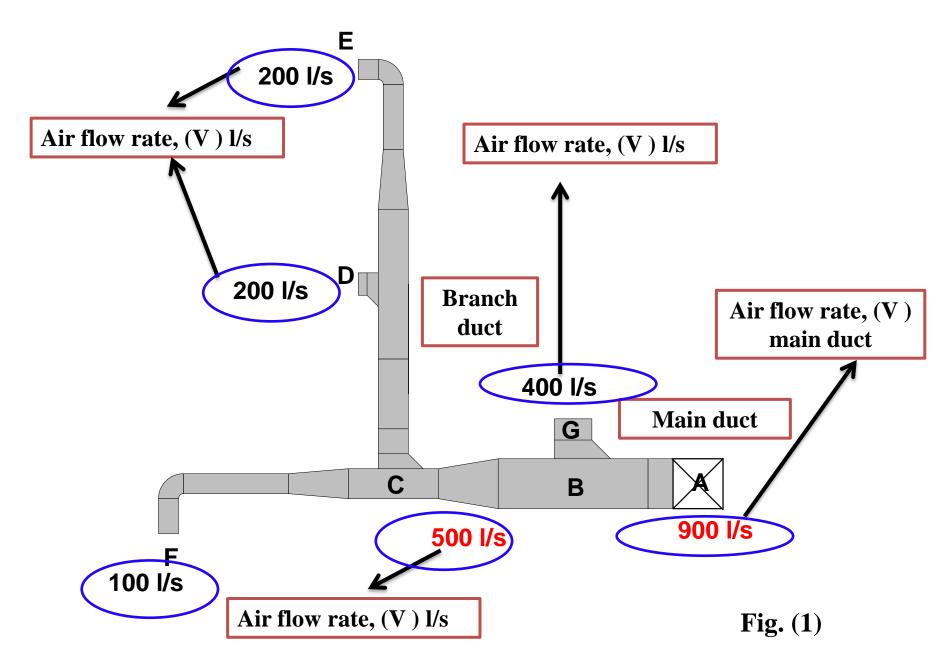

Width (mm)

Circular Equivalents of Rectangular Duct for Equal Friction and Capacitya

	Length of One Side of Rectangular Duct (a), mm																			
Lgth	100	125	150	175	200	225	250	275	300	350	400	450	500	550	600	650	700	750	800	900
Adj. ^b									Circula	r Duct	Diame	ter, mm	ı							
100	109																			
125	122	137																		
150	133	150	164																	
175	143	161	177	191									~							
200	152	172	189	204	219										H (1	mm)			
225	161	181	200	216	232	246									TT ()		L <i>)</i>			
250	169	190	210	228	244	259	273							_						
275	176	199	220	238	256	272	287	301												
300	183	207	229	248	266	283	299	314	328											
350	195	222	245	267	286	305	322	339	354	383				7	D	4 .	J:	4	()
400	207	235	260	283	305	325	343	361	378	409	437	400			Du	ici (mar	net	er (mm)
450	217	247	274	299	321	343	363	382	400	433	464	492	5.47							
500	227	258	287	313	337	360	381	401	420	455	488	518	547	CO1						
550	236 245	269 279	299	326	352 365	375	398	419	439	477	522	543 567	573	601	656					
600	253	289	310 321	339 351	378	390	414	436 452	457 474	496 515	533 553		598 622	628 653	683	711				
650 700	261	298	331	362	391	404 418	429 443	467	4 /4	533	573	589 610	644	677	708	711 737	765			
750	268	306	341	373	402	430	457	482	506	550	592	630	666	700	732	763	792	820		
800	275	314	350	383	414	442	470	496	520	567	609	649	687	722	755	787	818	847	875	
900	289	330	367	402	435	465	494	522	548	597	643	686	726	763	799	833	866	897	927	984
1000	301	344	384	420	454	486	517	546	574	626	674	719	762	802	840	876	911	944	976	1037
1100	313	358	399	437	473	506	538	569	598	652	703	751	795	838	878	916	953	988	1022	1086
1200	324	370	413	453	490	525	558	590	620	677	731	780	827	872	914	954	993	1030	1066	1133
1300	334	382	426	468	506	543	577	610	642	701	757	808	857	904	948	990	1031	1069	1107	1177
1400	344	394	439	482	522	559	595	629	662	724	781	835	886	934	980	1024	1066	1107	1146	1220
1500	353	404	452	495	536	575	612	648	681	745	805	860	913	963	1011	1057	1100	1143	1183	1260
1600	362	415	463	508	551	591	629	665	700	766	827	885	939	991	1041	1088	1133	1177	1219	1298
1700	371	425	475	521	564	605	644	682	718	785	849	908	964	1018	1069	1118	1164	1209	1253	1335
1800	379	434	485	533	577	619	660	698	735	804	869	930	988	1043	1096	1146	1195	1241	1286	1371
1900	3 87	444	496	544	590	663	674	713	751	823	889	952	1012	1068	1122	1174	1224	1271	1318	1405
2000	395	453	506	555	602	646	688	728	767	840	908	973	1034	1092	1147	1200	1252	1301	1348	1438
2100	4 02	461	516	566	614	659	702	743	782	857	927	993	1055	1115	1172	1226	1279	1329	1378	1470
2200	410	470	525	577	625	671	715	757	797	874	945	1013	1076	1137	1195	1251	1305	1356	1406	1501
2300	417	478	534	587	636	683	728	771	812	890	963	1031	1097	1159	1218	1275	1330	1383	1434	1532
2400	424	486	543	597	647	695	740	784	826	905	980	1050	1116	1180	1241	1299	1355	1409	1461	1561
2500	430	494	552	606	658	706	753	797	840	920	996	1068	1136	1200	1262	1322	1379	1434	1488	1589
2600 2700	437 443	501 509	560 569	616 625	668 678	717 728	764 776	810 822	853 866	935 950	1012 1028	1085 1102	1154	1220 1240	1283 1304	1344 1366	1402 1425	1459 1483	1513 1538	1617
2800	450	516	577	634	688	738	787	834S		930 ra‰∓.	1028 H 1033 a		1173 1190	1259	1304	1387	1447	1506	1562	1644 1670
2900	456	523	585	643	697	749	798	845	891	977	1058	1135	1208	1239	1344	1408	1469	1529	1586	1696

Table (2-1) Air velocity in duct system (m/s)

APPLICATION		CONTROLLING FACTOR NOISE		CONTROLLING FACTOR — DUCT FRICTION				
		GENERATION		Main Duels		Branch Duct		
		Main Duct		Supply	Return	Supply	Return	
Residences		3.0		5.1	3.0	3.0	3.0	
Apartments Hotel Bedrooms		5.1		7.6	6.6	6.1	5.1	
Hospital Redrooms								
Private Offices Directors Rooms		6.1		10.2	7.6	7.1	6.1	
Libraries	Ц		H					
Theatres Auditoriums		4.1		6.6	5.6	5.1	4.1	
General Offices High Class		7.6		10.2	7.6	8.1	6.1	
Restaurants High Class Stores								
Banks								
Average Stores Cafeterias		8.5		10.2	7.6	8.1	6.1	
Industrial		12.7		15.2	9.1	11.2	7.6	


For main Duct

H= Height (cm) - 20 to 25 (cm)

H= Height - 20 to 25 cm Msc. Zahraa F. Hussain

Example (1)

Find the dimension of the duct shown in Fig. 1, the maximum main duct height is 0.25 m.(General Offices High Class)

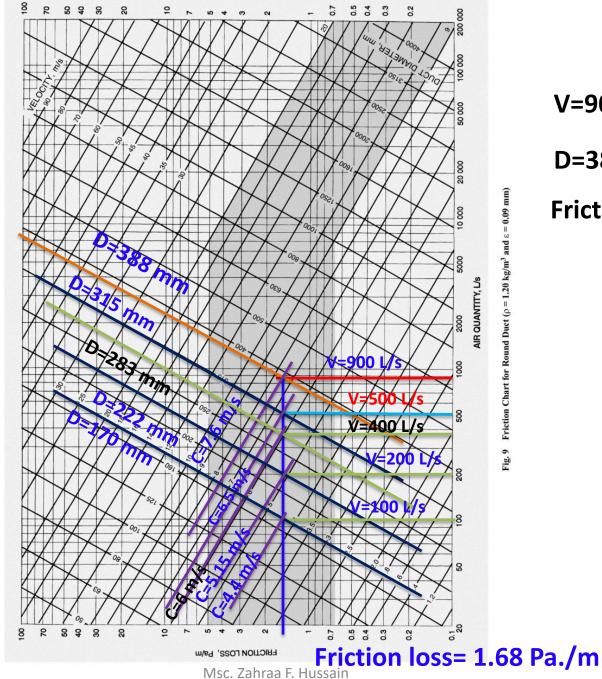
• Main duct section (1-2)

•
$$V=0.9 \text{ m}^3/\text{s}$$

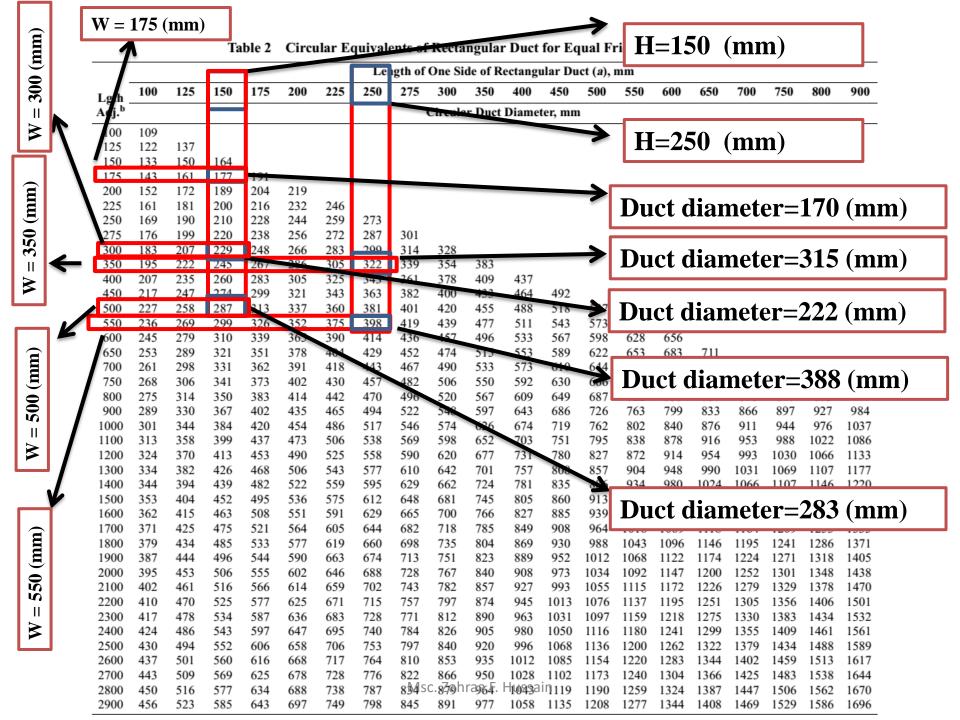
•
$$C=7.6 \text{ m/s } (T2-1)$$

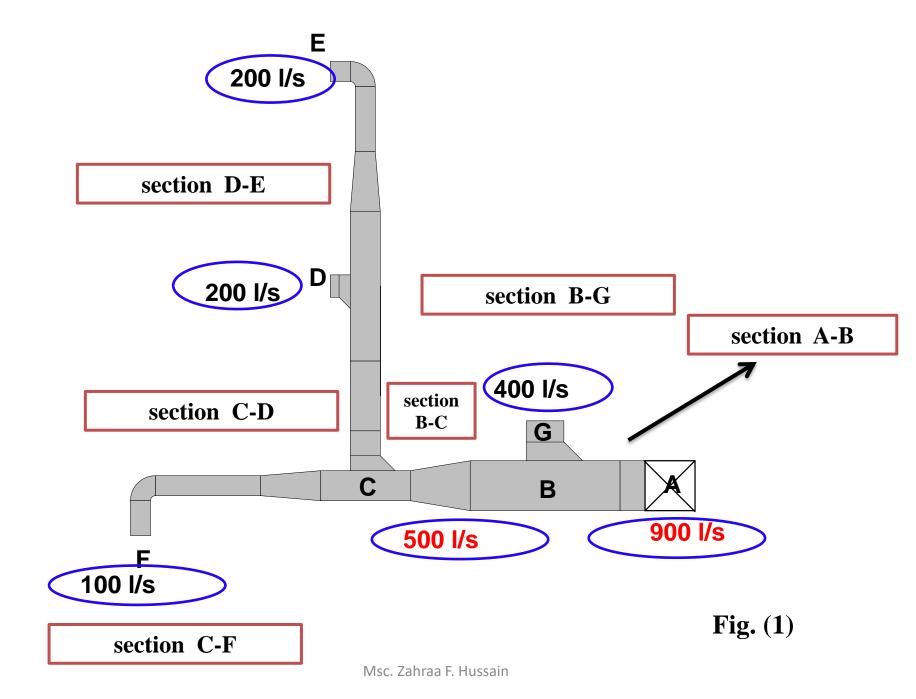
•
$$0.9=7.6\times A$$

•
$$A=0.11842 \text{ m}^2$$


•
$$A=\pi \frac{D^2}{4}$$

•
$$0.11842 = \pi \frac{D^2}{4}$$


• D = 0.388 m = 388 mm


Table (2-1) Air velocity in duct system (m/s)

LICATION	CONTROLLING	CONTROLLING FACTOR —						
	FACTOR NOISE		DUCT FRICTION					
	GENERATION		Main D	uels	Branch Duct			
	Main Duct		Supply	Return	Supply	Return		
dences	3.0		5.1	3.0	3.0	3.0		
rtments Hotel Bedrooms	5.1		7.6	6.6	6.1	5.1		
oital Bedrooms								
ate Offices Directors Rooms	6.1		10.2	7.6	7.1	6.1		
aries								
tres Auditoriums	4 1 7,1	Н	6.6	5.6	5.1	4.1		
eral Offices High Class	7.6	П	10.2	7.6	8.1	6.1		
aurants High Class Stores	C=7.6							
ΚS	C-7.0							
rage Stores Cafeterias	8.5		10.2	7.6	8.1	6.1		
strial	12.7		15.2	9.1	11.2	7.6		
	dences rtments Hotel Bedrooms pital Bedrooms ate Offices Directors Rooms aries	FACTOR NOISE GENERATION Main Duct dences rtments Hotel Bedrooms pital Bedrooms ate Offices Directors Rooms aries three Auditoriums eral Offices High Class aurants High Class Stores ks rage Stores Cafeterias FACTOR NOISE GENERATION Main Duct 3.0 5.1 6.1 7.6 C=7.6	FACTOR NOISE GENERATION Main Duct dences rtments Hotel Bedrooms pital Bedrooms ate Offices Directors Rooms aries three Auditoriums eral Offices High Class aurants High Class Stores ks rage Stores Cafeterias FACTOR NOISE GENERATION Main Duct 5.1 6.1 7.6 C=7.6	FACTOR NOISE GENERATION Main Duct Supply dences 3.0 5.1 7.6 pital Bedrooms ate Offices Directors Rooms aries General Offices High Class aurants High Class Stores Ks FACTOR NOISE GENERATION Main Duct Supply 6.1 7.6 7.6 7.6 7.6 7.6 7.7 6.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.6	FACTOR NOISE GENERATION Main Duct Supply Return 3.0 5.1 3.0 7.6 6.6 pital Bedrooms are Offices Directors Rooms aries Auditoriums FACTOR NOISE GENERATION Main Ducls Supply Return 7.6 6.6 6.6 10.2 7.6 C=7.6 Return 7.6 6.7 6.6 7.6 10.2 7.6 10.2 7.6 10.2 7.6 10.2 7.6 10.2 7.6 10.2 7.6	FACTOR NOISE GENERATION Main Duels Branch		

V=900 L/s D=388 mm **Friction line**

Section	V (lit/s)	Deq. (mm)	C m/s	W (mm)	H (mm)
A-B	900	388	7.6	550	250
В-С	500	315	6.5	350	250
B-G	400	283	6	500	150
C-D	200	222	5.15	300	150
D-E	200	222	5.15	300	150
C-F	100	170	4.4	175	150