AL MUSTAQBAL UNIVERSTY.
Medical physics sciences.
Optics laboratory.
second Stage.

> الكورس الاول - التجربة الاولى عملي

2024-2023

Refractive index of glass

Ruqayah Saleh

Experiment (Refractive index of glass)

aim
(The aim of the experiment is to study the refraction index of glass)

Apparatus:-

- parallel rectangle .
- Trapezoidal prism .
- He-Ne laser .

Theory:
refractive index, also called index of refraction, measure of the bending of a ray of light when passing from one medium into another. If i is the angle of incidence of a ray in vacuum (angle between the incoming ray and the perpendicular to the surface of a medium, called the normal), and r is the angle of refraction (angle between the ray in the medium and the normal), the refractive index \mathbf{n} is defined as the ratio of the sine of the angle of incidence to the sine of the angle of
refraction; i.e., $n=\sin \theta 1 / \sin \theta 2$. Refractive index is also
equal to the velocity c of light of a given wavelength in empty
space divided by its velocity v in a substance, or $n=c / v$

Procedure:

1- Align the setup as shown in fig.(1).
2- Using the thumbtacks, fix a sheet of paper on the wooden plane and lay the glass block, resting on the wider faces, at the Centre

3- Draw the outline of the glass block on a piece of paper. Two pins A and B determine the direction of an incident ray on a face of the glass block. The two pins are fixed on the working plane so that the straight line passing through them forms with the edge of the block a determined angle

4- Looking beyond the glass block, find the position for which the two pins, seen through the glass block, are aligned, then fix two other pins \mathbf{O} and \mathbf{P} to determine this new straight line. Verify that the two pins are aligned on the straight line determined by the other two.

5- Take away the glass and draw the lines as shown in the figure and a circumference of any radius centered in E.

6- From Snell's law we have that: -

n $2=\sin \theta 1 / \sin \theta 2$

:Discussion

1- .Define refractive index

2- .Discuss your result
3- Did you think that the density of glass effect the refractive index of it? Explain

GOOD LUCK

Ruqayah Saleh

