

Electromagnetic waves

Lecture 1

Vector Analysis and Vector Algebra

By Ali Jaafar

Tow stage Department of medical physics Al-Mustaqbal University-College

1-Vector Analysis and Vector Algebra

1-1Vector is a quantity having both magnitude and direction such as displacement, velocity, force and acceleration.

Example1 Write the vector for each of the following:a. of the vector (1, -3, -5)to (2, -7, 0). b. of the vector (2, -7, 0) to (1, -3, -5). c. The location vector to (4,90.(-.) solution)a $\langle -1, 4, -5 \rangle$ b $\langle 1, -4, 5 \rangle$ The two vectors is a and b are different

The two vectors in a and b are different in sign only, and this shows that they have the same magnitude, but they are opposite

1-2Vector Algebra

Laws of vector algebra. If A, B and C are vectors and m and n are scalars, then

- 1. A + B = B + A Commutative Law for Addition
- 2. A+(B+C) = (A+B) + C Associative Law for Addition
- 3. mA = Am Commutative Law for Multiplication
- 4. m(nA) = (mn) A Associative Law for Multiplication
- 5. (m+n) A = mA + nA Distributive Law
- 6. m (A+B) = mA + mB Distributive Law

Example:

Let us take A = 10 and B = 5 10 + 5 = 5 + 10 15 = 15

Example:

Prove: (3+7) = (-3) + (-7)

Proof:

$$-(10) = -3-7$$

-10 = -10

L.H.S = R.H.S

Example:

Let us take A = 2, B = 4 and C = 6L.H.S = A+(B+C) = 2 + (4 + 6) = 12 R.H.S = (A+B)+C = (2 + 4) + 6 = 12 L.H.S = R.H.S 12 = 12

Example:

Let us take A = 2, B = 3 and C = 5 $L.H.S = A \times (B + C) = 2 \times (3+5)$ $= 2 \times 8$ = 16 $R.H.S = A \times B + A \times C = 2 \times 3 + 2 \times 5$ =6+10=16 L.H.S = R.H.S16 = 16 Example A=4,m=5 mA = Am5x4=4x520=20 Example A=5 m=3 n=2 m(nA) = (mn) A

3(2x5)=(3x2)5

3x10=6x5

30=30

1-3 Scalar product

The process of multiplying a vector quantity by another vector quantity, the product of which is a non-vector scalar quantity, which has only an amount..

• The dot product of two vectors is given by the formula \overrightarrow{a} . $\overrightarrow{b} = |a||b|\cos(\theta)$.

1-3-1 The following laws are valid:

1. A . B = B . A Commutative Law for Dot Products

2. A $(B + C) = A \cdot B + A \cdot C$ Distributive Law

3. $m(A \cdot B) = (mA) \cdot B = A \cdot (mB) = (A \cdot B)m$, where m is a scalar.

4. $i \cdot i = j \cdot j = k \cdot k = 1, i \cdot j = j \cdot k = k \cdot i = 0$

5. If A = Al i + A2 j + A3 k and B = Bl i + B2 j + B3 k, then

A . B = A1B1+A2 B2+A3 B3

A . A = A2 = A1 2 + A2 2 + A3 2

B. B = B 2 = B1 2 + B2 2 + B3 2

6. If A \cdot B = 0 and A and B are not null vectors, then A and B are perpendicular.

Example: Find the scalar product of the vectors a = 2i + 3j - 6k and b = i + 9k.

Solution: To find the scalar product of the given vectors a and b, we will multiply their corresponding components.

a.b = (2i + 3j - 6k).(i + 0j + 9k)= 2.1 + 3.0 + (-6).9= 2 + 0 - 54= -52

Example: Calculate the scalar product of vectors a and b when the modulus of a is 9, modulus of b is 7 and the angle between the two vectors is 60° .

Solution: To determine the scalar product of vectors a and b, we will use the scalar product formula.

$$a.b = |a| |b| \cos\theta$$
$$= 9 \times 7 \cos 60^{\circ}$$

$$= 63 \times 1/2$$

= 31.5

Example 1: Find the angle between the two vectors 2i + 3j + k, and 5i - 2j + 3k.

Solution:

The two given vectors are:

$$\vec{a} = 2i + 3i + k, \text{ and } \vec{b} = 5i - 2j + 3k$$

$$|a| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$$

$$|b| = \sqrt{5^2 + (-2)^2 + 3^2} = \sqrt{25 + 4 + 9} = \sqrt{38}$$
Using the dot product we have $\vec{a} \cdot \vec{b} = 2.(5) + 3.(-2) + 1.(3) = 10$

-6+3=7

$$Cos\theta = \frac{a.b}{|a|.|b|}$$
$$= \frac{7}{\sqrt{14}.\sqrt{38}}$$
$$= \frac{7}{2.\sqrt{7} \times 19}$$
$$= \frac{7}{2\sqrt{133}}$$
$$\theta = Cos^{-1}\frac{7}{2\sqrt{133}}$$

 $\theta = \cos^{-1} 0.304 = 72.3^{\circ}$

1-4 Vector products

The process of multiplying a vector quantity by another vector quantity, the product of which is a vector quantity with magnitude and direction.

• The cross product of two vectors is given by the formula $\vec{a} \times \vec{b} = |a||b| \sin(\theta).$

Cross or vector product

1-4-1 The following laws are valid:

1. $A \times B = -B \times A$ Commutative Law for Cross Products Fails

2. $A \times (B + C) = A \times B + A \times C$ Distributive Law

3. $m(A \times B) = (mA) \times B = A \times (mB) = (A \times B)m$, where m is a scalar.

4. $i \times i = j \times j = k \times k = 0$, $i \times j = -j \times i = k$, $j \times k = -k \times j = i$, $k \times i = -i \times k = j$.

5. If A = Al i + A2 j + A3 k and B = Bl i + B2 j + B3 k, then

6. The magnitude of $A \times B$ is the same as the area of a parallelogram with sides A and B.

7. If $A \times B = 0$ and A and B are not null vectors, then A and B are parallel.

Example: Find the cross product of two vectors $\overrightarrow{a} = (3,4,5)$ and $\overrightarrow{b} = (7,8,9)$

Solution:

The cross product is given as,

$$\hat{i} \quad \hat{j} \quad \hat{k}$$

a × b = 3 4 5
7 8 9
= [(4×9)-(5×8)] \hat{i} -[(3×9)-(5×7)] \hat{j} +[(3×8)-(4×7)] \hat{k}
= (36-40) \hat{i} -(27-35) \hat{j} +(24-28) \hat{k} = -4 \hat{i} + 8 \hat{j} -4 \hat{k}

Example: Two vectors have their scalar magnitude as $|a|=2\sqrt{3}$ and |b|=4, while the angle between the two vectors is 60°.

Calculate the cross product of two vectors.

Solution:

We know that $\sin 60^\circ = \sqrt{3}/2$

The cross product of the two vectors is given by, $\overrightarrow{a} \times \overrightarrow{b} = |a||b|\sin(\theta)\hat{n} = 2\sqrt{3}\times4\times\sqrt{3}/2 = 12\hat{n}$

Example If $\overrightarrow{a} = (2, -4, 4)$ and $\overrightarrow{b} = (4, 0, 3)$, find the angle between them.

Solution

$$\overrightarrow{a} = 2i - 4j + 4k$$

$$\dot{b} = 4i + 0j + 3k$$

The magnitude of \overrightarrow{a} is

$$|a| = \sqrt{(2^2 + 4^2 + 4^2)} = \sqrt{36} = 6$$

The magnitude of \overrightarrow{b} is

 $|b| = \sqrt{4^2 + 0^2 + 3^2} = \sqrt{25} = 5$

As per the cross product formula, we have

$$\vec{a} \times \vec{b} = 2 - 4 4$$

$$4 0 3$$

$$= [(-4 \times 3) - (4 \times 0)]\hat{i}$$

$$-[(3 \times 2) - (4 \times 4)]\hat{j}$$

$$+[(2 \times 0) - (-4 \times 4)]\hat{k}$$

$$= -12\hat{i} + 10\hat{j} + 16\hat{k}$$

$$\vec{a} \times \vec{b} = (-12, 10, 16)$$

The length of the \vec{c} is
 $|c|=\sqrt{(-(12)^2+10^2+16^2)}$
 $=\sqrt{(144+100+256)}$
 $=\sqrt{500}$
 $=10\sqrt{5}$
 $\vec{a} \times \vec{b} = |a| |b| \sin \theta$
 $\sin \theta = \frac{\vec{a} \times \vec{b}}{|a|| b|}$
 $\sin \theta = 10\sqrt{5}/(5\times6)$
 $\sin \theta = \sqrt{5}/3$
 $\theta = \sin^{-1}(\sqrt{5}/3)$
 $\theta = \sin^{-1}(0.74)$
 $\theta = 48^{\circ}$

.