
Reem Salah Computer Skills & Computing for BME

1 | P a g e

BASIC SYNTAX

MATLAB's syntax is designed to be intuitive and user-friendly, especially for

mathematical and matrix operations. Here's a breakdown of some basic syntax

elements in MATLAB:

1. **Commands**:

 - Commands can be executed in the Command Window.

 - Commands can be written on one line or extended over several lines using

ellipses (`...`).

2. **Case Sensitivity**:

 - MATLAB is case-sensitive. For example, `A` and `a` are different variables.

3. **Variables**:

 - Assign values to variables using the equal sign (`=`). For instance, `a = 10;`

assigns the value 10 to the variable `a`.

 - Variable names should start with a letter, followed by letters, numbers, or

underscores.

 - Use the `who` command to see a list of current variables and `clear` to remove

a variable.

4. **Comments**:

Reem Salah Computer Skills & Computing for BME

2 | P a g e

 - Use the percent sign (`%`) to indicate a comment. For example: `% This is a

comment`.

 - Comments are not executed and are used for annotating the code.

5. **Matrices**:

 - Create matrices using square brackets: `A = [1 2 3; 4 5 6; 7 8 9]`.

 - Access matrix elements using parentheses: `A(1,2)` accesses the element in the

first row and second column.

 - Use the colon (`:`) operator for creating vectors: `1:5` results in `[1 2 3 4 5]`.

6. **Functions**:

 - Built-in functions: MATLAB provides a plethora of built-in functions, like

`sum()`, `mean()`, `size()`, etc.

 - User-defined functions: Create custom functions using the `function` keyword

in a separate `.m` file.

7. **Scripts**:

 - Scripts are sequences of MATLAB commands saved in a `.m` file.

 - They do not accept inputs or return outputs.

8. **Control Structures**:

 - MATLAB supports standard control structures like `if`, `else`, `for`, `while`,

and `switch`.

 - For instance:

 if a > b

 disp('a is greater')

 else

 disp('b is greater')

Reem Salah Computer Skills & Computing for BME

3 | P a g e

 end

9. **Operators**:

 - Arithmetic operators: `+`, `-`, `*`, `/`, `.^`, etc.

 - Relational operators: `==`, `~=`, `<`, `>`, `<=`, `>=`.

 - Logical operators: `&` (and), `|` (or), `~` (not).

10. **End Statement**:

 - Use the `end` keyword to mark the end of a loop, conditional statement, or

function.

11. **Suppressing Output**:

 - If you don't want to display the result of a command or expression in the

Command Window, end the line with a semicolon (`;`).

12. **Loading and Saving Data**:

 - Use `load` to load data from a file and `save` to save data to a file.

13. **Plotting and Visualization**:

 - Functions like `plot()`, `scatter()`, `surf()`, and `imshow()` are used for data

visualization.

Remember, MATLAB's primary strength lies in its matrix and vector operations.

Many operations are designed to work directly on matrices without the need for

explicit loops, making the code concise and efficient.

Reem Salah Computer Skills & Computing for BME

4 | P a g e

Practical

Let's go through some basic MATLAB syntax with accompanying examples:

1. Commands: Execute a command in the Command Window.

2. Case Sensitivity:

3. Variables: Assigning values and displaying them.

disp('Hello, MATLAB!')

A = 5;

a = 10;

disp(A) % Displays 5

disp(a) % Displays 10

radius = 7;

area = pi * radius^2;

disp(area)

Reem Salah Computer Skills & Computing for BME

5 | P a g e

4. Comments:

5. Matrices: Creating and accessing matrices.

6. Functions: Using built-in functions.

7. Scripts: You'd typically save this in a .m file and then run it.

radius = 7;

area = pi * radius^2;

disp(area)

M = [1 2 3; 4 5 6; 7 8 9];

element = M(2,3); % This will assign 6 to the variable element

vec = [2, 4, 6, 8, 10];

s = sum(vec); % Calculates the sum of the vector

% script_example.m

x = linspace(0, 2*pi, 100);

y = sin(x);

plot(x, y)

title('Sine Wave')

Reem Salah Computer Skills & Computing for BME

6 | P a g e

8. Control Structures:

9. Operators:

10. Suppressing Output:

11. Loading and Saving Data: Assuming you have data in a file named ‘data.mat.’

a = 15;

b = 10;

if a > b

 disp('a is greater')

else

 disp('b is greater')

end

a = 5;

b = 2;

c = a + b; % c will be 7

matrix = rand(5,5); % This will display the matrix

vector = ones(1,5); % This will also display the vector

value = 42; % This will not display anything

load('data.mat') % Loads the data

% ... perform operations ...

save('result.mat') % Saves the current workspace to result.mat

Reem Salah Computer Skills & Computing for BME

7 | P a g e

12. Plotting and Visualization:

These examples provide a basic introduction to MATLAB's syntax. Once you're

familiar with these concepts, you can explore more advanced features and toolboxes

to further harness the power of MATLAB.

x = 0:0.1:10;

y = sin(x);

plot(x,y)

xlabel('x values')

ylabel('y values')

title('Plot of y = sin(x)')

