Electromagnetic waves

Lecture 2

System of Coordinates and Application

Msc. Ali Jaafar

Tow stage

Department of medical physics
Al-Mustaqbal University-College

* Coordinate System

- Used to describe the position of a point in space
- Coordinate System consists of
- A fixed reference point called the origin
- Specific axes with scales and labels
- Instruction on how to label a point relative to the origin and the axes

* Types of Coordinate Systems

- Number line. . A number line (also called a number axis) is an infinite line on which real numbers are designated: every point on the number line fits a real number, which may be a positive integer, a negative integer, zero, a fraction, or an irrational decimal number.
- Cartesian coordinate system.
- Polar coordinate system.
- Cylindrical and spherical coordinate systems.
- Homogeneous coordinate system.
- Other commonly used systems.
- Relativistic coordinate systems.

* Cartesian Coordinate System

- Also called rectangular Coordinate System
- x - and y - axes intersect at the origin
- Points are labeled (x, y)
- The plural of axis is axes
- Ordered pair (x, y) with x -value first

Example /Determine the following points
a. $(2,3)$
b. $(-5,1)$
c. $(-3,-2)$
d. $(2,-4)$

solution :

* Polar coordinate system

- Origin and reference line are noted.
- Point is distance r from the origin in the direction of angle θ, ccw from reference line.
- Points are labeled (r, θ).

Polar to Cartesian coordinates

$\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \tan \theta=\frac{y}{x}$

- Based on forming a right triangle from r and θ.
- $x=r \cos \theta$
- $y=r \sin \theta$

* Cartesian to Polar coordinates

- If the Cartesian coordinates are known :
- r is the hypotenuse and θ an angle

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

- θ must be ccw from positive x axis for these equations to be valid

Example : The Cartesian coordinates of a point in the xy Plane are $(x, y)=(12,5)$. Fined the polar coordinates of this point .

Solution : from equation

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& r=\sqrt{12^{2}+5^{2}}
\end{aligned}
$$

$$
r=13
$$

And from equation ,

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& \tan \theta=\frac{5}{12}
\end{aligned}
$$

$$
\theta=\tan ^{-1}\left(\frac{5}{12}\right)
$$

$$
\theta=22,6^{\circ}
$$

Cylindrical coordinate systems

- There are two common methods for extending the polar coordinate system to three dimensions.
- In the cylindrical coordinate system, a z coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple ($\mathrm{r}, \theta, \mathrm{z}$).

* Convert from Cartesian coordinates to cylindrical coordinates
$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(\mathrm{r}, \theta, \mathrm{z})$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)$
$z=z$

* Convert from cylindrical coordinates to Cartesian coordinates

$$
\begin{aligned}
& (\mathrm{r}, \theta, \mathrm{z}) \rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& \mathrm{z}=\mathrm{z}
\end{aligned}
$$

Example: Convert from cylindrical coordinates to Cartesian coordinates ($4, \frac{2 \pi}{3},-2$)
Solution : $x=r \cos \theta$

$$
\begin{aligned}
& x=4 \cos \frac{2 \pi}{3} \\
& x=-2 \\
& y=r \sin \theta \\
& y=4 \sin \frac{2 \pi}{3} \\
& y=2 \sqrt{3} \\
& \mathrm{z}=\mathrm{z} \\
& \mathrm{z}=-2 \\
& \mathrm{p}=(-2,2 \sqrt{3},-2)
\end{aligned}
$$

Example: Convert from Cartesian coordinates to cylindrical coordinates $(1,-3,5)$

Solution :
$r=\sqrt{x^{2}+y^{2}}$
$r=\sqrt{1^{2}+-3^{2}}$
$r=\sqrt{10}$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)$
$\theta=\tan ^{-1}\left(\frac{-3}{1}\right)$
$\theta=-71.56$
$\theta=2 \pi+71.56$
$\theta=431.56$
$\mathrm{z}=\mathrm{z}$
$\mathrm{z}=5$
$(r, \theta, z)=(\sqrt{10}, 5.03,5)$

Homework :

Convert from Cartesian coordinates to polar coordinates ($3,-3,-7$) .

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& r=\sqrt{18} \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \theta=\tan ^{-1}\left(\frac{-3}{3}\right) \\
& \theta=\tan ^{-1}(-1) \\
& \theta=-45 \\
& \theta=-45+2 \pi=\cdots .
\end{aligned}
$$

$$
(\mathrm{r}, \theta)=(\sqrt{18}, \ldots .)
$$

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

- The radial distance is also called the radius or radial coordinate. The polar angle may be called colatitude, zenith angle, normal angle, or inclination angle.

Definition

To define a spherical coordinate system, one must choose two orthogonal directions, the zenith and the azimuth reference, and an origin point in space. These choices determine a reference plane that contains the origin and is perpendicular to the zenith. The spherical coordinates of a point P are then defined as follows:

1-The radius or radial distance is the Euclidean distance from the origin O to P .
2-The inclination (or polar angle) is the angle between the zenith direction and the line segment OP.

3-The azimuth (or azimuthal angle) is the signed angle measured from the azimuth reference direction to the orthogonal projection of the line segment OP on the reference plane.

$=r \sin \Theta \cos \Phi$
$\mathrm{Y}=\mathrm{r} \sin \theta \sin \Phi$
$\mathrm{Z}=\mathrm{r} \cos \theta$

Example: Convert from Spherical coordinates to Cartesian
 Coordinate System (4,30,60)

Solution:-
$X=r \sin \theta \cos \Phi$
$X=4 \sin (30) \cos (60)$

$\mathrm{x}=1$
$\mathrm{Y}=4 \sin (30) \cdot \sin (60)$
$\mathrm{Y}=\sqrt{3}$
$\mathrm{Z}=4 \cos (30)$
$Z=2 \sqrt{3}$
$\mathrm{r}=\sqrt{x^{2}+y^{2}}+\mathrm{z}^{2}$
$\Phi=\tan ^{-1}(\mathrm{y} / \mathrm{x})$
$\Theta=\tan ^{-1}\left(\frac{\sqrt{x 2+y 2}}{z}\right)$
> Homogeneous coordinate system
A point in the plane may be represented in homogeneous coordinates by a triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) where x / z and y / z are the Cartesian coordinates of the point. this introduces an extra coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the use of infinity. in general, a homogeneous coordinate system is one where only the ratios of the coordinates are significant and not the actual values.
> Other commonly used systems
Some other common coordinate systems are the following:
1- Curvilinear coordinates are a generalization of coordinate systems generally; the system is based on the intersection of curves.

* Orthogonal coordinates: coordinate surfaces meet at right angles
* Skew coordinates: coordinate surfaces are not orthogonal

2- The log-polar coordinate system represents a point in the plane by the logarithm of the distance from the origin and an angle measured from a reference line intersecting the origin.

3- Plücker coordinates are a way of representing lines in 3D Euclidean space using a six-tuple of numbers as homogeneous coordinates.

4- Generalized coordinates are used in the Lagrangian treatment of mechanics.
5- Trilinear coordinates are used in the context of triangles.

Applications

* Just as the two-dimensional Cartesian coordinate system is useful on the plane, a two-dimensional spherical coordinate system is useful on the surface of a sphere. In this system, the sphere is taken as a unit sphere, so the radius is unity and can generally be ignored. This simplification can also be very useful when dealing with objects such as rotational matrices.
* Three dimensional modeling of loudspeaker output patterns can be used to predict their performance. A number of polar plots are required, taken at a wide selection of frequencies, as the pattern changes greatly with frequency. Polar plots help to show that many loudspeakers tend toward Omni directionality at lower frequencies.

Spherical coordinates are useful in analyzing systems that have some degree of symmetry about a point, such as volume integrals inside a sphere, the potential energy field surrounding a concentrated mass or charge, or global weather simulation
in a planet's atmosphere. A sphere that has the Cartesian equation $\mathrm{x} 2+\mathrm{y} 2+\mathrm{z} 2=\mathrm{c} 2$ has the simple equation $\mathrm{r}=\mathrm{c}$ in spherical coordinates.

Homework:-

Convert from Spherical coordinates to Cartesian Coordinate System (8,30,60) .

