Mathematics II chapter three

3.1 Vectors analysis including parametric equations

for lines in space

Equation lines in space.

Suppose that L is a line in space through a point $\mathrm{P}_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right.$, z_{o}) Parallel to a vector $\mathrm{v}=\mathrm{ai}+\mathrm{bj}+\mathrm{ck}$,then L is the set of all points $p(x, y, z)$ for which $P_{0} P$ is parallel to v. thus $P_{0} P=t v$ for some scalar parameter t. the value of t depend on the location of the point P along the line. the expanded from of the equation:

$$
\begin{aligned}
& \overrightarrow{P_{o} P}=t v \\
& \quad\left(x-x_{o}\right) i+\left(y-y_{o}\right) j+\left(z-z_{o}\right) k=t(a i+b j+c k) \\
& x-x_{o}=t a \\
& y-y_{o}=t b \\
& z-z_{o}=t c
\end{aligned}
$$

From equation above:

The parametric equation for the line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\nu=a i+b j+c k:$

$$
\begin{aligned}
& x=x_{o}+t a \\
& y=y_{o}+t b \\
& z=z_{o}+t c
\end{aligned}
$$

Example: find parametric equation for the line through the points

$$
P(-3,2,-3) \text { and } Q(1,-1,4)
$$

Solution: the vector

$$
\begin{aligned}
& \overrightarrow{P Q}=(1-(-3)) i+(-1-2) j+(4-(-3)) k \\
& \overrightarrow{P Q}=4 i-3 j+7 k \\
& \quad \therefore \quad a=4 \quad, \quad b=-3 \quad, c=7
\end{aligned}
$$

Mathematics II

$$
\therefore \quad x_{0}=-3 \quad, y_{0}=2 \quad, z_{0}=-3
$$

Example: Find parametric equations for the line through the point $(-2,0,4)$ parallel to the vector $v=2 i+4 j-2 k$

Solution:

With $P_{0}\left(x_{0}, y_{0}, z_{0}\right)=(-2,0,4)$

$$
x_{0}=-2 \quad, y_{0}=0 \quad, z_{0}=4
$$

$$
\text { and } v=a i+b j+c k=2 i+4 j-2 k
$$

$$
a=2 \quad, b=4 \quad, c=-2
$$

\therefore

$$
\begin{aligned}
& x=x_{0}+a t \longmapsto x=-2+2 t \\
& y=y_{0}+b t \longmapsto y=4 t \\
& z=z_{0}+c t \longmapsto z=4-2 t
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x=x_{o}+a t \longrightarrow x=-3+4 t \\
& y=y_{0}+b t \quad y=2-3 t \\
& z=z_{0}+c t \quad z=-3+7 t
\end{aligned}
$$

3.2 Vectors analysis including parametric equations for planes in space

Equation for plane in space:

Suppose that plane \boldsymbol{M} passes through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and is normal to the nonzero vector $n=A i+B j+C k$, then M is the set of all points $P(x, y, z)$ for which $\overrightarrow{P_{o} P}$ is orthogonal to n. Thus the dot product

n. $\overrightarrow{P_{o} P}=0$

This equation is equivalent to:

$$
\begin{aligned}
& (A i+B j+C k) \cdot\left[\left(x-x_{o}\right) i+\left(y-y_{o}\right) j+\left(z-z_{o}\right) k\right]=0 \\
& A\left(x-x_{o}\right)+B\left(y-y_{o}\right)+C\left(z-z_{o}\right)=0 \quad \text { Component equation }
\end{aligned}
$$

This becomes:

$$
A x+B y+C z=A x_{0}+B y_{0}+C z_{0}
$$

$$
A x+B y+C z=D \quad \Longleftrightarrow \text { Component equation simplified }
$$

Where $D=A x_{0}+B y_{0}+C z_{0}$

Example: Find an equation for the plane through $\operatorname{Po}(\mathbf{4}, \mathbf{2}, \mathbf{1})$ normal to $\overline{N=5 \imath+2 \jmath-3 k}$.

Solution//
$\mathrm{D}=\mathrm{AX}_{0}+\mathrm{BY}_{0}+\mathrm{CZ}_{\mathrm{O}}=5 * 4+2 * 2-3 * 1=21$
$\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$
$5 x+2 y-3 z=21$
Example: Find an equation for the plane through $A(1,1,1)$, $B(\mathbf{3 , 2 , 4})$ and $C(3,0,3)$.

Solution//

$$
\begin{aligned}
& =(3-1) \mathbf{i}+(\mathbf{2 - 1}) \mathbf{j}+(4-1) k=2 i+j+3 k \overline{A B} \\
& =(3-1) \mathbf{i}+(0-1) \mathbf{j}+(3-1) k=2 i-j+2 k \overline{A C} \\
& \overline{A B} X \overline{A C}=\left|\begin{array}{ccc}
i & j & k \\
2 & 1 & 3 \\
2 & -1 & 2
\end{array}\right| \\
& \quad=[2-(-3) i-(4-6) j+(-2-2) k \\
& \quad=5 i+2 j-4 k]
\end{aligned}
$$

$\mathrm{D}=\mathrm{Ax} \mathbf{x}_{0}+\mathrm{By}_{0}+\mathrm{Cz}_{0}=5 * \mathbf{1 + 2 * 1 - 4 * 1 = 3}$
$5 \mathrm{x}+2 \mathrm{y}-4 \mathrm{z}=3$

