

Lecture 3

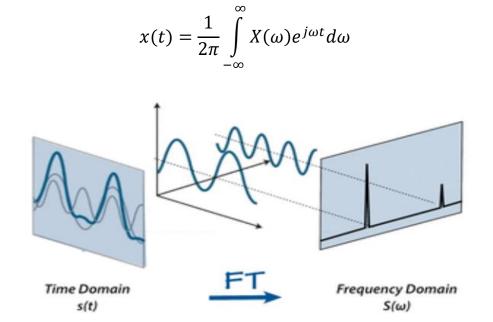
Signal Spectrum using Fourier Transform

3.1 Fourier Transform

The Fourier transform is used to convert a continuous and non-periodic time-domain signal into the frequency domain. The resulting frequency domain representation from performing the Fourier transform is continuous and non-periodic. The Fourier transform of x(t)

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

The inverse Fourier transform of *X*(*w*):

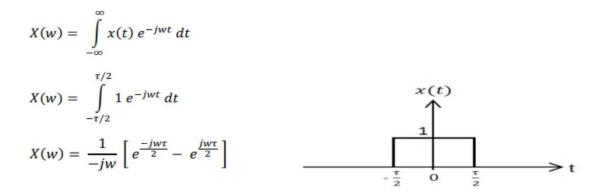


2

Example: Find the Fourier Transform of the rectangular pulse signal x(t) defined by

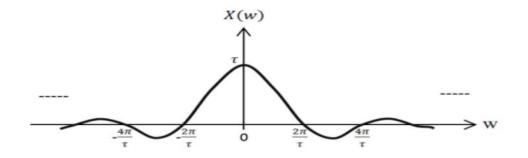
$$x(t) = \begin{cases} 1 & |t| < \frac{\tau}{2} \\ 0 & |t| > \frac{\tau}{2} \end{cases}$$

Solution:



$$X(w) = \frac{1}{jw} \left[e^{\frac{jw\tau}{2}} - e^{\frac{-jw\tau}{2}} \right]$$
$$X(w) = \frac{2}{w} \left[\frac{e^{\frac{jw\tau}{2}} - e^{\frac{-jw\tau}{2}}}{2j} \right]$$
$$X(w) = \frac{2}{w} \sin\left(\frac{w\tau}{2}\right)$$
$$X(w) = \tau \operatorname{sinc}\left(\frac{w\tau}{2}\right)$$

3

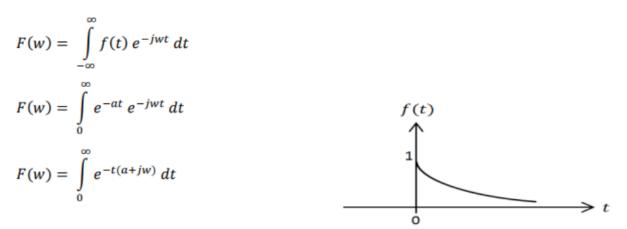


Example: Suppose that a signal gets turned on at t=0 and then decays exponentially, So that

$$f(t) = \begin{cases} e^{-at} & t \ge 0\\ 0 & t < 0 \end{cases}$$

For a > 0. Find the fourier transform of this signal.

Solution:



$$F(w) = \frac{1}{-(a+jw)} \left[e^{-\infty} - e^0 \right]$$
$$F(w) = \frac{1}{(a+jw)}$$

3.2 Properties of the Continuous-Time Fourier Transform

There are a number of properties of the Fourier transform that may be used to simplify the evaluation of the Fourier transform and its inverse. Some of these properties are described below:

Property	Signal	Fourier Transform
Linearity	ax(t) + by(t)	aX(w) + bY(w)
Time-Shift	$x(t-t_o)$	$e^{-jwt_o}X(w)$
Time-Reversal	<i>x</i> (- <i>t</i>)	X(-w)
Frequency Shifting	$e^{jw_o t} x(t)$	$X(w-w_o)$
Time Scaling	x(at)	$\frac{1}{ a } X\left(\frac{w}{a}\right)$
Convolution	x(t) * y(t)	X(w) Y(w)
Time differentiation	$\frac{dx(t)}{dt}$	jwX(w)
Parseval's relation	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(w) ^2dw$

3.3 Frequency response

In Lecture1 we showed that the output y(t) of a continuous-time LTI system equals the convolution of the input x(t) with the impulse response h(t); that is

 $y(t) = x(t) \otimes h(t)$

Applying the convolution property, we obtain

 $Y(\omega) = X(\omega).H(\omega)$

Where Y(w), X(w) and $H(\omega)$ are the Fourier transforms of y(t), x(t) and h(t), respectively. we have

$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

Example: Consider the linear time-invariant system characterized by the secondorder linear constant coefficient difference equation

$$y'(t) + 2y(t) = x(t) + x'(t)$$

By using Fourier Transform, find the Impulse response, h(t).

Solution:

$$jwY(w) + 2Y(w) = X(w) + jwX(w)$$

$$Y(w)[jw + 2] = X(w)[1 + jw]$$

$$\frac{Y(w)}{X(w)} = \frac{jw + 1}{jw + 2}$$

$$H(w) = \frac{jw + 2 - 1}{jw + 2}$$

$$H(w) = 1 - \frac{1}{jw+2}$$
$$h(t) = \delta(t) - e^{-2t}u(t)$$

6

Assignment:

1. Find the Fourier transform of the unit impulse signal x(t) defined by:

$$x(t) = \delta(t)$$

2. Consider a continuous- time LTI system described by $\frac{dy(t)}{dt} + 2y(t) = x(t)$ Using the Fourier transform to find the output y(t) if the input signal is: $x(t) = e^{-t}u(t)$