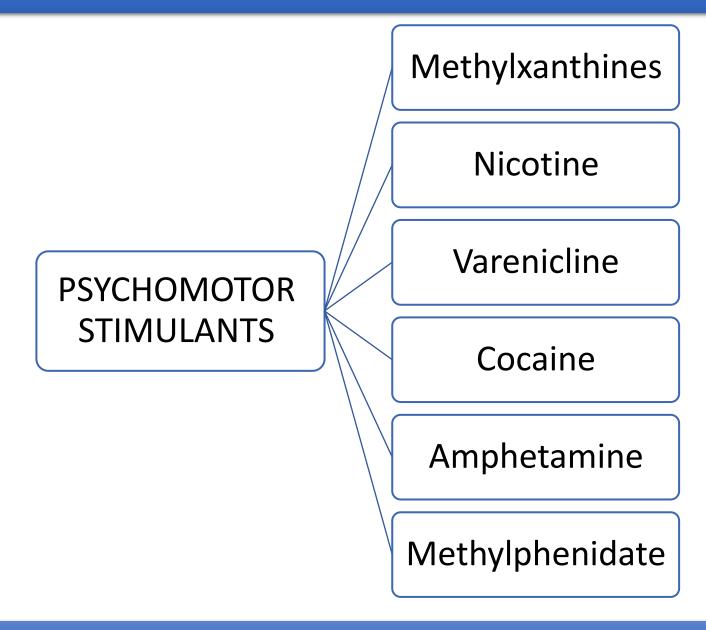
Al-Mustaqbal University College of Pharmacy 4th stage Pharmacology II Lecture: 2

CNS Stimulants

Dr. Qassim A. Zigam

Overview

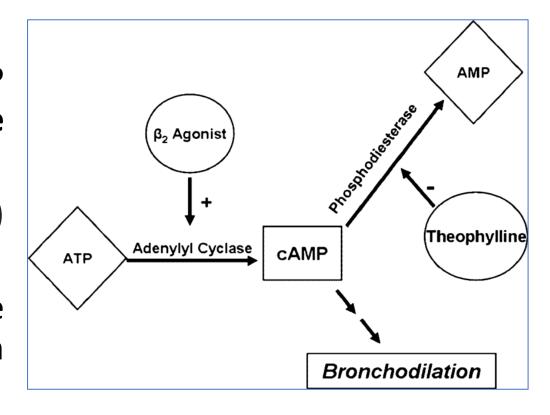

CNS stimulants include:

- 1. The **psychomotor** stimulants cause:
 - Excitement and euphoria
 - Decrease feelings of fatigue
 - Increase motor activity
- 2. The **hallucinogens** produce
 - Changes in thought and mood

 CNS stimulants have diverse clinical uses and are important as drugs of abuse.

PSYCHOMOTOR STIMULANTS

- They are a **purine-derived** group of pharmacologic agents.
- They are clinically used as bronchodilatory and stimulatory agents.
- The methylxanthines include:
- 1. Theophylline which is found in tea
- 2. Theobromine found in cocoa
- 3. Caffeine, the most widely consumed stimulant in the world, is found in the highest concentration in certain coffee products, tea, cola drinks, energy drinks, chocolate candy, and cocoa.



Mechanisms of action:

- 1. Translocation of extracellular calcium.
- 2. Increase in cyclic AMP and cyclic GMP caused by inhibition of phosphodiesterase (PDE inhibitors).
- **3. Blockade** of adenosine (CNS inhibitory Nt.) receptors.
- The **latter most** likely accounts for the actions achieved by the usual consumption of **caffeine-containing beverages**.

Actions:

1. CNS effects:

- The caffeine contained in 1-2 cups of coffee (100 -200 mg) causes a decrease in fatigue and increased mental alertness.
- Consumption of 1.5 g of caffeine (12-15 cups of coffee) produces anxiety and tremors.
- The **spinal cord** is stimulated only by **very high doses** (**2 -5 g**) of caffeine.
- Tolerance can rapidly develop to the stimulating properties of caffeine, and withdrawal consists of feelings of fatigue and sedation.

Actions:

2. Cardiovascular system:

- A high dose of caffeine has **positive inotropic** and **chronotropic effects** on the heart.
- In others, an accelerated heart rate can trigger premature ventricular contractions.

3. Diuretic action:

 Caffeine has a mild diuretic action that increases the urinary output of sodium, chloride, and potassium.

4. Gastric mucosa:

• Because methylxanthines **stimulate** the secretion of **gastric acid**, individuals with **peptic ulcers should avoid** foods and beverages containing methylxanthines.

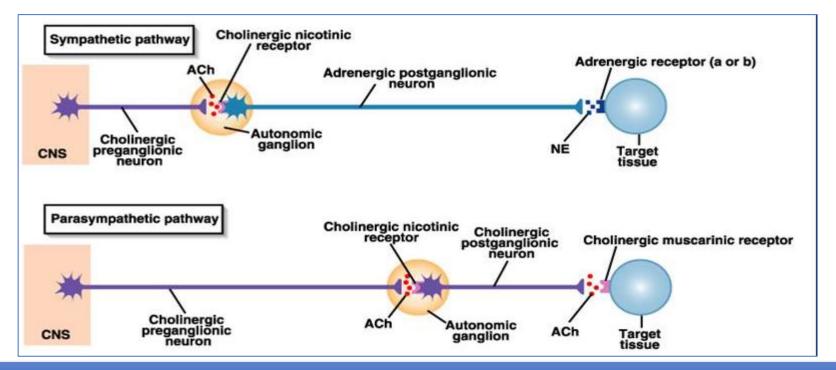
Therapeutic uses:

- Caffeine and its derivatives relax the smooth muscles of the bronchioles.
- Previously the mainstay of asthma therapy, theophylline has been largely replaced by other agents, such as β2 agonists and corticosteroids
- Caffeine is also used in combination with analgesics like acetaminophen and aspirin for the management of headaches in both prescription and over-the-counter products.

Pharmacokinetics:

- The methylxanthines are well absorbed orally.
- Caffeine distributes throughout the body, including the brain.
- These drugs cross the placenta to the fetus and are secreted into the breast milk.
- All **methylxanthines** are metabolized in the **liver**, generally by the CYP1A2 pathway, and the metabolites are excreted in the **urine**.

Adverse effects:


- Moderate doses of caffeine cause insomnia, anxiety, and agitation.
- High dosage results in toxicity, which is manifested by emesis and convulsions.
- Lethal dose is 10 g of caffeine (about 100 cups of coffee), which induces cardiac arrhythmias.
- Lethargy, irritability, and headache occur in users who routinely consume more than 600 mg of caffeine per day (roughly 6 cups of coffee per day) and then suddenly stop.

- Nicotine is the active ingredient in **tobacco**.
- It is **not** currently used **therapeutically** (except in **smoking cessation** therapy).
- It is second only to caffeine as the most widely used CNS stimulant, and it is second only to alcohol as the most abused drug.
- In combination with the <u>tars and carbon monoxide</u> found in cigarette smoke, nicotine represents a **serious risk factor** for <u>lung and cardiovascular disease</u>, various cancers, and other illnesses.
- **Dependency** on the drug is not easily overcome.

Mechanism of action:

- In low doses, nicotine causes ganglionic stimulation by depolarization.
- At high doses, nicotine causes ganglionic blockade.
- Nicotine receptors exist in the CNS, which participate in the stimulant effect.

Pharmacokinetics:

- It is **highly lipid soluble**, absorption readily occurs via the <u>oral mucosa</u>, <u>lungs</u>, <u>Gl mucosa</u>, <u>and skin</u>.
- Nicotine crosses the placental membrane and is secreted in breast milk.
- By inhaling tobacco smoke, the average smoker takes in 1 to 2 mg of nicotine per cigarette and the acute **lethal** dose is **60 mg**.
- More than 90% of the nicotine inhaled in smoke is absorbed.
- Clearance of nicotine involves metabolism in the lung and the liver and urinary excretion.
- Tolerance to the effects of nicotine develops rapidly, often within days.

Actions:

CNS:

- Nicotine is highly lipid soluble and readily crosses the blood-brain barrier.
- Cigarette smoking or administration of **low doses** of nicotine produces some degree of **euphoria** and **arousal**, as well as **relaxation**.
- It improves attention, learning, problem-solving, and reaction time.
- High doses of nicotine result in central respiratory paralysis and severe hypotension caused by medullary paralysis.
- Nicotine is also an appetite suppressant.

Actions:

Peripheral effects:

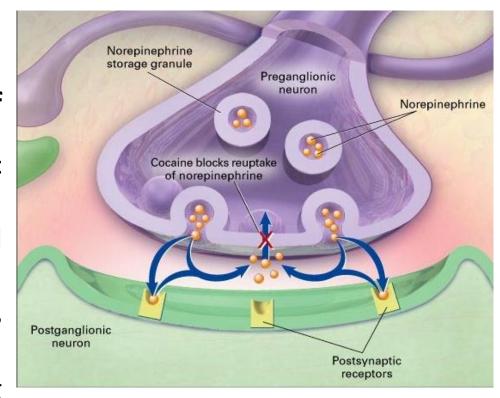
- Stimulation of the **sympathetic ganglia** as well as of the **adrenal medulla increases** blood pressure and heart rate.
- In addition, nicotine-induced vasoconstriction ??? can decrease coronary blood flow, adversely affecting a patient with angina.
- Stimulation of the **parasympathetic** ganglia also increases **motor activity of the bowel**.

Adverse effects:

- The CNS effects of nicotine include irritability and tremors.
- Nicotine may also cause <u>intestinal cramps</u>, <u>diarrhea</u>, <u>and increased heart rate</u> <u>and blood pressure</u>.
- In addition, cigarette smoking **increases** the rate of **metabolism** for a number of drugs.

Withdrawal syndrome:

- Nicotine is an addictive substance, and physical dependence develops rapidly and can be severe.
- Withdrawal is characterized by
- ✓ Irritability
- ✓ Anxiety
- ✓ Restlessness
- ✓ Difficulty concentrating, headaches, and insomnia
- ✓ Appetite is affected, and GI upset often occurs

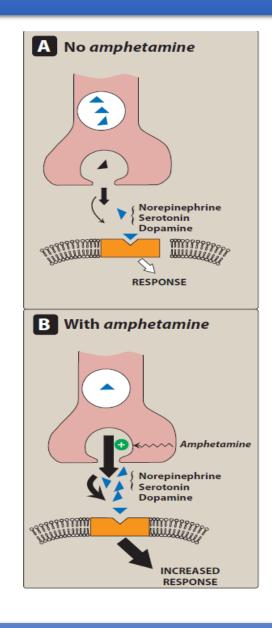

Varenicline

- Varenicline is a **partial agonist** at neuronal **nicotinic** acetylcholine receptors in the CNS.
- It produces **less euphoric effects** than nicotine (nicotine is a full agonist at these receptors).
- Thus, it is useful as an adjunct in the management of smoking cessation in patients with nicotine withdrawal symptoms.
- Additionally, varenicline tends to attenuate the rewarding effects of nicotine if a person relapses and uses tobacco.
- Patients taking varenicline should be monitored for suicidal thoughts, vivid nightmares, and mood changes.

Cocaine

- Cocaine is a widely available and highly addictive drug.
- Cocaine is classified as a **Schedule II drug** of controlled substances.
- The mechanism of action of cocaine is the **blockade of the reuptake of the monoamines** (norepinephrine, serotonin, and dopamine) into the presynaptic terminals.
- This potentiates and prolongs the CNS and peripheral actions of these monoamines.
- In particular, the **prolongation** of **dopaminergic** effects in the brain (limbic system) produces intense **euphoria**.
- Chronic intake of cocaine depletes dopamine triggering the vicious cycle of craving for cocaine which temporarily relieves severe depression.

Cocaine


Table I. Schedules of Controlled Substances within the CSA.3,4

Schedule	Definitions	Examples
Schedule I	No accepted medical use with a lack of accepted safety and high abuse potential; medications within this schedule may not be prescribed, dispensed, or administered for medical use	Heroin, peyote, ecstasy, lysergic acid diethylamide (LSD)
Schedule II	High abuse potential with severe psychological or physical dependence; however, these medications have an accepted medical use and may be prescribed, dispensed, or administered	Morphine, codeine, hydromorphone, methadone, oxycodone, fentanyl, methylphenidate, amphetamine, pentobarbital, combination products with < 15 mg of hydrocodone per dosage unit (eg, Vicodin)
Schedule III	Abuse potential less than Schedules I or II but more than Schedule IV medications; abuse may lead to moderate or low physical dependence or high psychological dependence	Products with < 90 mg of codeine per dosage unit (eg, Tylenol with codeine), dronabinol, anabolic steroids, ketamine
Schedule IV	Abuse potential less than Schedule III but more than Schedule V medications	Propoxyphene, various benzodiazepines, sibutramine
Schedule V	Medications with the least potential for abuse among the controlled substances	Robitussin AC, Phenergan with codeine, pregabalin

- Amphetamine is a sympathetic amine that shows neurologic and clinical effects similar to cocaine.
- Dextroamphetamine is a major member of this class of compounds.
- **Methamphetamine** is a derivative of amphetamine available for prescription use.
- 3,4-Methylenedioxymethamphetamine (also known as MDMA, or Ecstasy) is a synthetic derivative of methamphetamine with both stimulant and hallucinogenic properties.

Mechanism of action:

- Amphetamine has an indirect effect via an elevation of the level of catecholamines in synaptic spaces by releasing intracellular stores.
- Also, it inhibits MAO, and it is a weak reuptake inhibitor.
- Despite different mechanisms of action, the behavioral effects of amphetamine and its derivatives are similar to those of cocaine.

Actions:

- CNS:
- The major behavioral effects of amphetamine result from a combination of its dopamine and norepinephrine release-enhancing properties.
- Amphetamine <u>increased alertness</u>, <u>decreased fatigue</u>, <u>depressed appetite</u>, and <u>insomnia</u>.
- At high doses, psychosis and convulsions can ensue.

Sympathetic nervous system:

• In addition to its CNS action, amphetamine acts on the adrenergic system, indirectly stimulating the receptors through norepinephrine release.

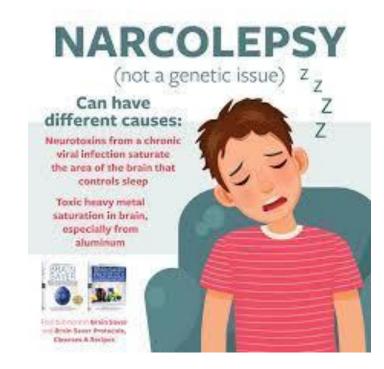
Therapeutic uses:

Attention deficit hyperactivity disorder (ADHD):

- Some young children are hyperkinetic and lack the ability to be involved in any one activity for longer than a few minutes.
- Dextroamphetamine, methamphetamine, and methylphenidate can help **improve** attention **span**, **alleviate** many of the **behavioral** problems associated with ADHD, and **reduce** hyperkinesia.
- Lisdexamfetamine is a prodrug that is converted to the active component dextroamphetamine after GI absorption and metabolism.

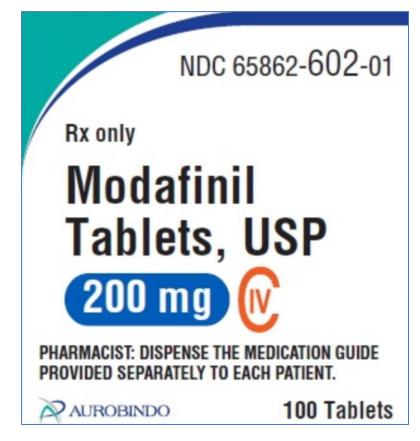
Therapeutic uses:

Attention deficit hyperactivity disorder (ADHD):


- Atomoxetine is a non-stimulant drug approved for ADHD in children and adults.
- **Unlike** methylphenidate, which blocks dopamine reuptake more than norepinephrine reuptake, atomoxetine is more **selective** for inhibition of **norepinephrine** reuptake.
- Therefore, it is **not** considered **habit-forming** and is **not** a **controlled substance**.

Therapeutic uses:

Narcolepsy:


- Narcolepsy is a relatively rare sleep disorder that is characterized by uncontrollable bouts of sleepiness during the day.
- It is sometimes accompanied by catalepsy, a loss in muscle control, and even paralysis brought on by strong emotions such as laughter.
- The sleepiness can be treated with drugs, such as mixed **amphetamine** salts or **methylphenidate**.

Therapeutic uses:

Narcolepsy:

- Modafinil and its R-enantiomer derivative, Armodafinil, are considered first-line agents for the treatment of narcolepsy.
- Modafinil is effective orally, it is well distributed throughout the body and undergoes extensive hepatic metabolism, and the metabolites are excreted in the urine.
- Headaches, nausea, and nervousness are the primary adverse effects, they may have some potential for **abuse and physical dependence**.

Therapeutic uses:

Appetite suppression:

- Phentermine and diethylpropion are sympathomimetic amines that are related structurally to amphetamine.
- These agents are used for their appetite-suppressant effects in the management of obesity.

Pharmacokinetics:

- Amphetamine is completely absorbed from the GI tract, metabolized by the liver, and excreted in the urine.
- Note: Administration of urinary alkalinizing agents such as sodium bicarbonate will increase the <u>nonionized species</u> of the drug and <u>enhance</u> the <u>reabsorption</u> of dextroamphetamine from the renal tubules into the bloodstream.
- Amphetamine abusers often administer the drugs by IV injection and/or by smoking.
- The **euphoria** caused by amphetamine lasts 4 to 6 hours, or four- to eightfold longer than the effects of **cocaine**.

Adverse effects:

CNS effects:

- Adverse effects of amphetamine usage include insomnia, irritability, weakness, dizziness, tremor, and hyperactive reflexes.
- Amphetamine can also cause <u>confusion</u>, delirium, panic states, and suicidal tendencies, especially in mentally ill patients.
- Chronic amphetamine use produces a state of "amphetamine psychosis" that resembles the psychotic episodes associated with schizophrenia.

Adverse effects:

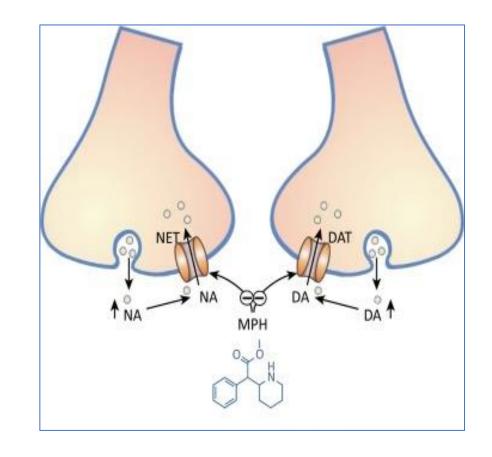
Cardiovascular effects:

• Amphetamine causes <u>palpitations</u>, <u>cardiac arrhythmias</u>, <u>hypertension</u>, <u>anginal pain</u>, <u>and circulatory collapse</u>.

GI system effects:

Amphetamine acts on the GI system, causing <u>anorexia</u>, <u>nausea</u>, <u>vomiting</u>, <u>abdominal cramps</u>, <u>and diarrhea</u>.

Contraindications:


- Patients with <u>hypertension</u>, <u>cardiovascular disease</u>, <u>hyperthyroidism</u>, <u>glaucoma</u>.
- History of <u>drug abuse</u> or those taking <u>MAO inhibitors</u>.

- Methylphenidate has CNS-stimulant properties similar to those of amphetamine and may also lead to abuse, although its addictive potential is controversial.
- It is a **Schedule II** drug.
- Methylphenidate is presently one of the most prescribed medications in **children**.
- It is estimated that **4 to 6 million** children in the United States take methylphenidate daily for **ADHD**.
- Its active isomer, dexmethylphenidate, is also a Schedule II drug used for the treatment of ADHD.

Mechanism of action:

- Children with ADHD may produce weak dopamine signals, which suggests that once-interesting activities provide fewer rewards to these children.
- Methylphenidate is a dopamine and norepinephrine transport inhibitor and may act by increasing both dopamine and norepinephrine in the synaptic space.
- Methylphenidate may have less potential for abuse than cocaine, because it enters the brain much more slowly than cocaine and, thus, does not increase dopamine levels as rapidly.

Therapeutic uses:

- Methylphenidate has been used for the treatment of ADHD.
- Methylphenidate is also effective in the treatment of narcolepsy.
- Unlike, methylphenidate, dexmethylphenidate is not indicated in the treatment of narcolepsy.

Pharmacokinetics:

- Both methylphenidate and dexmethylphenidate are **readily absorbed** after **oral** administration.
- Methylphenidate is available in extended-release oral formulations and as a transdermal patch for once-daily application.
- The de-esterified product, ritalinic acid, is excreted in urine.

Adverse effects:

- GI adverse effects are the most common and include abdominal pain and nausea.
- Other reactions include anorexia, insomnia, nervousness, and fever.
- In **seizure** patients, methylphenidate may **increase** seizure **frequency**, especially if the patient is taking **antidepressants**.
- It is **contraindicated** in patients with <u>glaucoma</u>.
- Methylphenidate can **inhibit the metabolism** of warfarin, phenytoin, phenobarbital, primidone, and tricyclic antidepressants.

HALLUCINOGENS

- A few agents have, as their primary action, the ability to induce altered perceptual states reminiscent of dreams.
- Many of these altered states are accompanied by visions of bright, colorful changes in the environment and by the plasticity of constantly changing shapes and colors.
- The individual under the influence of these agents is incapable of normal decision-making because the drug interferes with rational thought.
- These compounds are known as **hallucinogens**, and **lysergic acid diethylamide** (LSD) and **tetrahydrocannabinol** (from marijuana) are examples of agents in this class.

THANK YOU FOR YOUR ATTENTION