Lecture One

Background

1- Some Mathematical Relations

- \sin at $=\frac{e^{\mathrm{j} a t}-e^{-\mathrm{j} a t}}{2 \mathbf{j}}$
- \cos at $=\frac{e^{\mathrm{j} a t}+e^{-\mathrm{j} a t}}{2}$
- $\operatorname{sa}(\mathrm{t})=\frac{\sin t}{t} \quad$ (sinc function $)$

$$
\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)
$$

$$
\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)
$$

$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
$\cos (\mathrm{A}-\mathrm{B})=\cos (\mathrm{A}) \cos (\mathrm{B})+\sin (\mathrm{A}) \sin (\mathrm{B})$

- $\cos \mathrm{A} \cos \mathrm{B}=\frac{1}{2}[\cos (\mathrm{~A}-\mathrm{B})+\cos (\mathrm{A}+\mathrm{B})]$
- $\quad \sin \mathrm{A} \sin \mathrm{B}=\frac{1}{2}[\cos (\mathrm{~A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})]$

2- Signal Characteristics:

- Amplitude (A) is the maximum displacement of a particle in a wave from its equilibrium position. It is measured in meters (m).

- Frequency (f) is the number of complete waves passing a point in one second. It is measured in hertz (Hz).

Note// $x_{2}(t)$ has higher frequency than $x_{1}(t)$.

- Wavelength (λ) is the distance between two identical points on a wave (i.e. one full wave). It is measured in meters (m).

- Wave speed (c) is measured in meters per second (m / s).

Wave speed (c), frequency (f) and wavelength (λ) are linked together in the following equation.
$\mathrm{c}=\mathrm{f} \lambda$

- $\mathrm{c}=$ wave speed $(\mathrm{m} / \mathrm{s})$
- $\lambda=$ wavelength (m)

- Phase

Points on a wave which are always travelling in the same direction, rising a falling together, are in phase with each other.

Points on a wave which are always traveling in opposite directions to each other, one is rising while the other is falling, are in anti-phase with each other.

3- Mathematical Representation of Some Function:

$$
\text { 1- } x_{1}(t)=\left\{\begin{array}{ccc}
A & 0<t<1 \\
-A & 1<t<2
\end{array}\right.
$$

$$
\text { 2- } x_{2}(t)=\left\{\begin{array}{cc}
2 A & 0<t<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

3- $x_{3}(t)=A \sin t$

4- $x_{4}(t)=\mathrm{A} \sin (\mathrm{t}-\alpha)$

5- $x_{5}(t)=A \sin (t+\alpha)$

6- $x_{6}(t)=A \sin (t)+A$

By using slope law:
$\frac{\underline{\nu}_{2-} \underline{\nu}_{1}}{x_{2}-x_{1}}=\frac{\nu-y_{1}}{x-x_{1}}$
Or,
$\frac{1-0}{1-0}=\frac{y-0}{x-0}$
$y=x$
Or, $x_{7}(\mathrm{t})=\mathrm{t} \quad$ for $0<\mathrm{t}<1$

