

1

تطبيقات منظومات الزمن الحقيقي اسم المادة :

م.م اشراق ماضي جبور اسم التدريسي :

الثالثـــــــة المرحلة :

2024-2023 السنة الدراسية :

 Models and Characteristics of RTS / Lec2 :عنوان المحاضرة

2.1 Basic Model of a real-time system

Fig. 1 shows a simple model of a real-time system in terms of its important

functional blocks. Observe that in Fig. 3, the sensors are interfaced with

the input conditioning block, which in turns is connected to the input

interface. The output interface, output conditioning, and the actuator are

interfaced in a complementary manner. In the following we briefly

describe the roles of the different functional blocks of a real-time system

Fig. 1: A Model of a Real-Time System

Sensor: A sensor converts some physical characteristic of its environment

into electrical signals. An example of a sensor is photo-voltaic cell which

converts light energy into electrical energy. A wide variety of temperature

and pressure sensors are also used.

2

Actuator: an actuator is any device that takes its inputs from the output

interface of a computer and converts these electrical signals into some

physical actions on its environment. The physical actions may be in the

form of motion, change of thermal, electrical, pneumatic, or physical

characteristics of some objects. A popular actuator is a motor. Heaters are

also very commonly used. Besides, several hydraulic and pneumatic

actuators are also popular

Signal Conditioning Units: The electrical signals produced by a

computer can rarely be used to directly drive an actuator. The computer

signals usually need conditioning before they can be used by the actuator.

This is termed output conditioning. Similarly, input conditioning is

required to be carried out on sensor signals before they can be accepted

by the computer. For example, analog signals generated by a photo-

voltaic cell are normally in the mille-volts range and need to be

conditioned before they can be processed by a computer. The following

are some important types of conditioning carried out on raw signals

generated by sensors and digital signal generated by computer:

3

1- Voltage amplification: voltage amplification is normally required

to be carried out to match the full scale sensor voltage output with

the full scale voltage input to the interface of a computer. For

example, a sensor might produce voltage in the mille-volts range;

whereas the input interface of a computer may require the input

signal level to be of the order of a volt.

2- voltage level shifting: voltage level shifting is often required to

align the voltage level generated by a sensor with that acceptable to

the computer. For example, a sensor may produce voltage in the

range -0.5 to +0.5 volt, whereas the input interface of the computer

may accept voltage only in the range of 0 to 1 volt. In this case, the

sensor voltage must undergo level shifting before it can be used by

the computer.

3- frequency range shifting and filtering: frequency range shifting is

often used to reduce the noise components in a signal. Many types

of noise occur in narrow bands and the signal must be shifted from

the noise bands so that noise can be filtered out.

4- Signal mode conversion: a type of signal mode conversion that is

frequently carried out during signal conditioning involves changing

direct current into alternating current and vice-versa. Another type

signal mode conversion that is frequently used is conversion of

analog signals to a constant amplitude pulse train such that the pulse

rate or pulse width is proportional to the voltage level. Conversion

4

of analog signals to a pulse train is often necessary for input to

systems such as transformer coupled circuits that do not pass direct

current.

2.2 Characteristics of Real Time System

We now discuss a few key characteristics of real-time systems. These

characteristics distinguish real-time systems from non-real-time systems.

However, the reader may note that all the discussed characteristics many

not be applicable to every real-time system.

1- Time constraints: every real-time task is associated with some time

constraints. One form of time constraints that is very common is

deadlines associated with tasks. A task deadline specifies the time

before which the task must complete and produce the results. Other

type of timing constraints are delay and duration. It is the

responsibility of the real-time operating system (RTOS) to ensure

that all tasks meet their respective time constraints. Time constraints

can be classified into the following three types;

a- Delay constraint: a delay constraint captures the minimum time

(delay) that must elapse between the occurrence of two arbitrary

events e1 and e2.

b- Deadline constraint: a deadline constraint captures the

permissible maximum separation between any two arbitrary

events e1 and e2.

5

c- Duration constraints: a duration constraint on an event specifies

the time period over which the event acts. A duration constraint

can either be minimum type or maximum type. The minimum

type duration constraint requires that once the event starts the

event must not end before a certain minimum duration. Whereas

a maximum type duration constraint requires that once the event

starts, the event must end before a certain maximum duration

elapses.

2- New correctness criterion: the notion of correctness in real-time

systems is different from that used in the context of traditional

systems. In real-time systems, correctness implies not only logical

correctness of the results, but the time at which the results are

produced is important. A logically correct result produced after the

deadline would be considered as an incorrect result.

3- Embedded: A vast majority of real-time systems are embedded in

nature. An embedded computer system is physically “embedded” in

its environment and often controls it. The sensors of the real-time

computer collect data from the environment pass them on to the real-

time computer for processing. The computer, in turn passes

information (processed data) to the actuators to carry out the

necessary work on the environment, which results in controlling

some characteristics of the environment. An example of an

6

embedded real-time system is Multi-Point Fuel Injection (MPFI)

system.

4- Safety-Criticality: For traditional non-real-time system safety and

reliability are independent issues. However, in many real-time

systems these two issues are intricately bound together making them

safety-critical. Note that a safe system is one that does not cause any

damage even when it fails. A reliable system is one that can operate

for long durations of time without exhibiting any failures.

5- Concurrency: A real-time system usually needs to respond to

several independent events within very short and strict time bounds.

For instance, consider a chemical plant automation system, which

monitors the progress of a chemical reaction and controls the rate of

reaction. These parameters are sensed using sensors fixed in the

chemical reaction chamber. These sensors may generate data

asynchronously at different rates. Therefore, the real-time system

must process data from all the sensors concurrently, otherwise

signals may be lost and the system may malfunction.

6- Distributed and Feedback Structure: in many real-time systems, the

different components of the system are naturally distributed across

widely spread geographic locations. Therefore, these events may

often have to be handled locally and responses produced to them to

prevent overloading of the underlying communication network.

7

Therefore, the sensors and the actuators may be located at the places

where the events are generated.

7- Task Criticality: task criticality is a measure of the cost of failure of

a task. Task criticality is determined by examining how critical are

the results produced by the task to the proper functioning of the

system. A real-time system may have tasks of very different

criticalities. It is therefore natural to expect that the criticalities of

the different tasks must be taken into consideration while designing

for fault-tolerance. The higher the criticality of a task, the more

reliable it should be made. Further, in the event of the failure of a

highly critical task, immediate failure detection and recovery are

important.

8- Custom Hardware: A real-time system is often implemented on

custom hardware that is specifically designed and developed for the

purpose. For example, an MPFI car used a processor that must be

powerful general purpose processor such as a Pentium or an Athlon

processor. Some of the most powerful computers used in MPFI

engines are 16- or 32-bit processors running at approximately 40

MHz. However, unlike the conventional PCs, a processor used in

these car engines do not deal with processing frills such as screen-

savers or a dozens of different applications running at the same time.

All that the processor in an MPFI system need to do is to compute

8

the required fuel injection rate that is most efficient for a given speed

and acceleration.

9- Reactive: real-time systems are often reactive. A reactive system is

one in which an on-going interaction between the computer and the

environment is maintained. Traditional systems compute functions

on the input data to generate the output data. In contrast to traditional

computation of the output as a simple function of the input data,

real-time systems do not produce any output data but enter into on-

going interaction with their environment. In each interaction step,

the results computed are used to carry out some actions on the

environment. The reaction of the environment is sampled and is fed

back to the system. Therefore, the computations in a real-time

system can be considered to be non-terminating.

10- 10.Stability: Under overload conditions, real-time systems

need to continue to meet the deadline of the most critical tasks,

though the deadlines of non-critical task may not be met. This is in

contrast to the requirement of fairness for traditional systems even

under overload conditions.

11- 11.Exception Handling: Many real-time systems work round-

the-clock and often operate without human operators. For example,

consider a small automated chemical plant that is set up to work non-

stop. When there are no human operators, taking corrective actions

on a failure become difficult. Even if no corrective actions can be

9

immediate taken, it is desirable that a failure does not result in

catastrophic situations. A failure should be detected and the system

should continue to operate in a gracefully degraded mode rather than

shutting off abruptly.

