Digital Signal Processing
Sampling Theorem
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Sampling with a Periodic Impulse Train
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Frequency Domain Representation of Sampling

x t)=x_()s)=x_() i ot —nT) (Modulation)

x ()= i x.(nT)o(t —nT ) (Shifting property)

» Let us now consider the Fourier transform of xs(t):
o If s(t)2 55(j Q) and x ()« 5 X . (jOQ)

S(jQ) = 277[ 25 (Q—-kQ ) where Q =27/T 1sthe sampling rate in radians/s.

k=

X=X, G*S(D = Y X, (j@-kQ)



* By applying the continuous-time Fourier transform to
equation .
x, ()= x.(nT)6( —nT)

We obtain ”:_w 3
Xs(jQ)= D x (nT)e "

n= +00

x[n]=x,(nT) and X (e'°)= Zx[n]e—jam

n=—00

consequently



Exact Recovery of Continuous-Time
from lts Samples
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Exact Recovery of Continuous-Time
from Its Samples
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Aliasing Distortion

e (a) represents a band
limited Fourier
transform of x.(t) Whose

highest nonzero
frequencyis Q.

* (b) represents a periodic
impulse train with
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* (c) shows the output of
impulse modulator in
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Aliasing Distortion

Q

e In this case the copies of X ¢ (J€2) overlap and is not longer
recoverable by lowpass filtering therefore the reconstructed signal is
related to original continuous-time signal through a distortion referred
to as aliasing distortion.



