Example 9.3-2 ${ }^{1 / 2}$ Adiabatic Saturation of Air

An air stream at $87.8^{\circ} \mathrm{C}$ having a humidity $\mathrm{H}=0.030 \mathrm{~kg}$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air is contacted in an adiabatic saturator with water. It is cooled and humidified to 90% saturation.
(a) What are the final values of H and T ?
(b) For 100% saturation, what would be the values of H and T ?
Solution,
(a) The adiabatic saturation curve through this point is followed upward to the left until it intersects the 90% line at $42.5^{\circ} \mathrm{C}$ and $\mathrm{H}=0.0500 \mathrm{~kg} \mathrm{H} \mathrm{H} \mathrm{O} / \mathrm{kg}$ dry air.
(b) The same line is followed to 100% saturation, where $\mathrm{T}=40.5^{\circ} \mathrm{C}$ and $\mathrm{H}=0.0505 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air.

Example 9.3-2 2/2

(a)

(b)

Wet bulb temperature T_{W}

- Steady-state non-equilibrium temperature reached when a small amount of water is contacted under adiabatic conditions by a continuous stream of gas.
- Steady state temp. attained by a wet-bulb thermometer under standardized condition.
- The temperature and humidity of the gas are not changed.
- At $T_{W}=T_{S}$, the convective heat transfer and wet bulb lines.

$$
q=M_{B} k_{y} \lambda_{W}\left(H_{W}-H\right) A
$$

or,
M_{B} is the molecular weight of air
λ_{W} is the latent heat of vaporization at T_{W} k_{y} is the mass-transfer coefficient

$$
\frac{H-H_{W}}{T-T_{W}}=-\frac{h / M_{B} k_{y}}{\lambda_{W}}
$$

$$
q=h\left(T-T_{W}\right) A
$$

The operating line

$$
G\left(H_{y}-H_{y l}\right)=L c_{L}\left(T_{L}-T_{L I}\right)
$$

where,
$G=$ dry air flow, $\mathrm{kg} / \mathrm{s} . \mathrm{m}^{2}$.
$L=$ water flow, kg water/s.m ${ }^{2}$
$c_{L}=$ heat capacity of water, assumed constant at $4187 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.
$T_{L}=$ temperature of water, ${ }^{\circ} \mathrm{C}$ or K .
$H_{y}=$ enthalpy of air-water vapor mixture, J / kg air.

$$
=\mathrm{c}_{\mathrm{s}}\left(\mathrm{~T}-\mathrm{T}_{0}\right)+\mathrm{H} \lambda_{0}=(1.005+1.88 \mathrm{H}) 10^{3}(\mathrm{~T}-0)+2.501 \times 10^{6} \mathrm{H}
$$

$H=$ humidity of air, kg water $/ \mathrm{kg}$ dry air.

Figure 10.5-3: Temperature enthalpy diagram and operating line for water-cooling.

Design of Water-Cooling Tower Using Film Mass-Transfer Coef.

* Please follow the steps mentioned in section 10.5C in book
- To calculate the tower height

$$
\int_{0}^{z} d z=z=\frac{G}{M_{B} k_{G} a P} \int_{H_{y 1}}^{H_{y 2}} \frac{d H_{y}}{H_{y i}-H_{y}}
$$

where,
$\mathrm{z}=$ tower height
$\mathrm{P}=$ atm pressure.
$\mathrm{M}_{\mathrm{B}}=$ molecular weight of air
$\mathrm{k}_{\mathrm{G}} \mathrm{a}=$ volumetric mass transfer coeff. in gas, $\mathrm{kg} \mathrm{mol} / \mathrm{s} . \mathrm{m}^{3} . \mathrm{Pa}$

Design Using Overall Mass-Transfer Coefficients.

$$
\int_{0}^{z} d z=z=\frac{G}{M_{B} K_{G} a P} \int_{H_{y 1}}^{H_{y 2}} \frac{d H_{y}}{H_{y}^{*}-H_{y}}
$$

where,
$\mathrm{K}_{\mathrm{G}} \mathrm{a}=$ overall mass transfer coefficient.

- If experimental cooling data in an actual run in a cooling tower with known height z are available, then the value of $\mathrm{K}_{\mathrm{G}} \mathrm{a}$ can be obtained.

Table 10.5-1

able 10.5-1. Enthalpies of Saturated Air-Water Vapor Mixtures $\left(0^{\circ} \mathrm{C}\right.$ Base Temperature)							
$\mathbf{T}_{\mathbf{L}}$		$\mathbf{H}_{\mathbf{x}}$		$\mathbf{T}_{\mathbf{L}}$		$\mathbf{H}_{\mathbf{x}}$	
		btu	J			btu	J
${ }^{\circ} \mathbf{F}$	${ }^{\circ} \mathrm{C}$	$1 \mathrm{~b}_{\mathrm{m}}$ dry air	kg dry air	${ }^{\circ} \mathbf{F}$	${ }^{\circ} \mathrm{C}$	$\mathbf{1 b m}_{\mathrm{m}} \text { dry air }$	kg dry air
60	15.6	18.78	43.68×10^{3}	100	37.8	63.7	148.2×10^{3}
80	26.7	36.1	84.0×10^{3}	105	40.6	74.0	172.1×10^{3}
85	29.4	41.8	97.2×10^{3}	110	43.3	84.8	197.2×10^{3}
90	32.2	48.2	112.1×10^{3}	115	46.1	96.5	224.5×10^{3}
95	35.0	55.4	128.9×10^{3}	140	60.0	198.4	461.5×10^{3}

Example 10.5-1 1/7

Design of Water-Cooling Tower Using Film Coefficients.

A packed countercurrent water-cooling tower using a gas flow rate of $G=1.356 \mathrm{~kg}$ dry air/s. m^{2} and a water flow rate of $\mathrm{L}=1.356 \mathrm{~kg}$ water $/ \mathrm{s} . \mathrm{m}^{2}$ to cool the water from $\mathrm{T}_{\mathrm{L} 2}=43.3^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{L} 1}=29.4^{\circ} \mathrm{C}$.
The entering air at $29.4^{\circ} \mathrm{C}$ has a wet bulb temperature of $23.9^{\circ} \mathrm{C}$. The mass-transfer coefficient k_{G} a is estimated as $1.207 \times 10^{-7} \mathrm{~kg} \mathrm{~mol} / \mathrm{s} . \mathrm{m}^{3} . \mathrm{Pa}$ and h_{L} a $/ \mathrm{k}_{\mathrm{G}} \mathrm{aM}_{\mathrm{B}} \mathrm{P}$ as 4.187×10^{4} J/kg.K.

Calculate the height of packed tower z. The tower operates at a pressure of $1.013 \times 10^{5} \mathrm{~Pa}$.

Example 10.5-1 2/7 Solution

Following the step outlined

Data
preparation
to be used in
equation
$(9.3 .8)$

Table 10.5-1 are plotted in Fig. 10.5-4.

2. The inlet air at \mathrm{T}_{\mathrm{G} 1}=29.4^{\circ} \mathrm{C} has a wet bulb temperature of 23.9^{\circ} \mathrm{C}

3. The humidity from the humidity chart is \mathrm{H}_{1}=0.0165 \mathrm{~kg} \mathrm{H} \mathrm{H} / \mathrm{O} / \mathrm{kg}

dry air.\end{array}\right.\)

$$
\begin{aligned}
\mathrm{H}_{\mathrm{y} 1} & =\mathrm{c}_{\mathrm{s}}\left(\mathrm{~T}-\mathrm{T}_{0}\right)+\mathrm{H} \lambda_{0}=(1.005+1.88 \mathrm{H}) 10^{3}\left(\mathrm{~T}-\mathrm{T}_{0}\right)+\mathrm{H} \lambda_{0} \\
\mathrm{H}_{\mathrm{y} 1} & =(1.005+1.88 \times 0.0165) 10^{3}(29.4-0)+2.501 \times 10^{6}(0.0165) . \\
& =71.7 \times 10^{3} \mathrm{~J} / \mathrm{kg} .
\end{aligned}
$$

The point $\mathrm{H}_{\mathrm{y} 1}=71.7 \times 10^{3}$ and $\mathrm{T}_{\mathrm{L} 1}=29.4^{\circ} \mathrm{C}$ is plotted. Then substituting into Eq. (10.5-2) and solving,

Example 10.5-1 3/7

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{H}_{\mathrm{y} 2}-\mathrm{H}_{\mathrm{y} 1}\right) & =\mathrm{Lc}_{\mathrm{L}}\left(\mathrm{~T}_{\mathrm{L} 2}-\mathrm{T}_{\mathrm{L} 1}\right) \\
1.356\left(\mathrm{H}_{\mathrm{y} 2}-71.7 \times 10^{3}\right) & =1.356\left(4.187 \times 10^{3}\right)(43.3-29.4) . \\
\mathrm{H}_{\mathrm{y} 2} & =129.9 \times 10^{3} \mathrm{~J} / \mathrm{kg} \text { dry air. }
\end{aligned}
$$

Now both $\mathrm{H}_{\mathrm{y} 1}$ and $\mathrm{H}_{\mathrm{y} 2}$ are calculated

(1) The point $\mathrm{H}_{\mathrm{y} 2}=129.9 \times 10^{3}$ and $\mathrm{T}_{\mathrm{L} 2}=43.3^{\circ} \mathrm{C}$ is plotted, giving the operating line.
(2) Lines with slope $-\mathbf{h}_{\mathbf{L}} \mathbf{a} / \mathbf{k}_{\mathbf{G}} \mathbf{a} \mathbf{M}_{\mathbf{B}} \mathbf{P}=\mathbf{- 4 1 . 8 7} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{J} / \mathbf{k g} . \mathbf{K}$ are plotted giving H_{yi} and H_{y} values, which are tabulated in Table 10.5-2 along with derived values as shown.
(3) Values of $1 /\left(\mathrm{H}_{\mathrm{yi}}-\mathrm{H}_{\mathrm{y}}\right)$ are plotted versus H_{y} and the area under the curve from $\mathrm{H}_{\mathrm{y} 1}=71.7 \times 10^{3}$ to $\mathrm{H}_{\mathrm{y} 2}=129.9 \times 10^{3}$ is

$$
\int_{H_{y 1}}^{H_{y 2}} \frac{d H_{y}}{H_{y i}-H_{y}}=1.82
$$

Example 10.5-1 4/7

Example 10.5-1 5/7

$$
\int_{H_{y 1}}^{H_{y 2}} \frac{d H_{y}}{H_{y i}-H_{y}}=1.82
$$

Substituting into Eq. (10.5-13),

$$
\begin{aligned}
& z=\frac{G}{M_{B} k_{G} a P} \int \frac{d H_{y}}{H_{y i}-H_{y}}=\frac{1.356}{29\left(1.207 \times 10^{-7}\right)\left(1.013 \times 10^{5}\right)}(1.82) \\
& \therefore z=6.98 m
\end{aligned}
$$

Example 10.5-1 6/7

H_{yi}	H_{y}	$\mathrm{H}_{\mathrm{yi}}-\mathrm{H}_{\mathrm{y}}$	$1 /\left(\mathrm{H}_{\mathrm{yi}}-\mathrm{H}_{\mathrm{y}}\right)$
94.4×10^{3}	71.7×10^{3}	22.7×10^{3}	4.41×10^{-5}
108.4×10^{3}	83.5×10^{3}	24.9×10^{3}	4.02×10^{-5}
124.4×10^{3}	94.9×10^{3}	29.5×10^{3}	3.39×10^{-5}
141.8×10^{3}	106.5×10^{3}	35.3×10^{3}	2.83×10^{-5}
162.1×10^{3}	118.4×10^{3}	43.7×10^{3}	2.29×10^{-5}
184.7×10^{3}	129.9×10^{3}	54.8×10^{3}	1.85×10^{-5}

Table 10.5-2: Enthalpy Values for Solution to Example 10.5-1 (enthalpy in J / kg dry air).

Example 10.5-1 7/7

Figure 10.5-4: Graphical solution of Example 10.5-1

Minimum Value of Air Flow $1 / 2$

* The air flow \mathbf{G} is not fixed but must be set for the design of the cooling tower.
* For a minimum value of G, the operating line MN is drawn through the point $\mathbf{H}_{\mathbf{y} 1}$ and $\mathrm{T}_{\mathrm{L} 1}$ with a slope that touches the equilibrium line at $\mathrm{T}_{\mathrm{L} 2}$, point N .
* If the equilibrium line is quite curved, line MN could become tangent to the equilibrium line at a point farther down the equilibrium line than point \mathbf{N}.
* For the actual tower, a value of G greater than $\mathrm{G}_{\text {min }}$ must be used. Often, a value of G equal to 1.3 to 1.5 times $G_{\text {min }}$ is used.

Minimum Value of Air Flow $2 / 2$

Figure 10.5-5: Operating-line construction for minimum gas flow.

