Example 9.3-2^{1/2} Adiabatic Saturation of Air

An air stream at 87.8 °C having a humidity H = 0.030 kgH₂O/kg dry air is contacted in an adiabatic saturator with water. It is cooled and humidified to 90 % saturation.

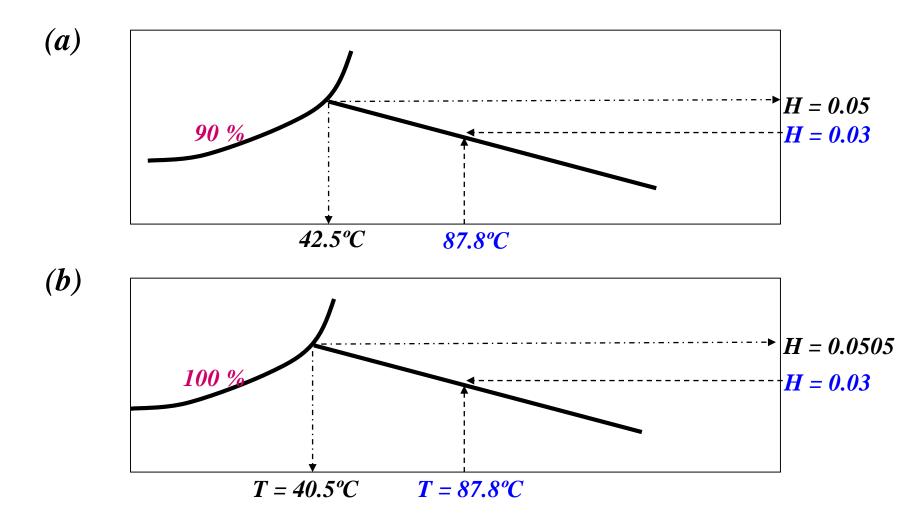
- (a) What are the final values of H and T?
- (b) For 100 % saturation, what would be the values of H and T ?

Solution,

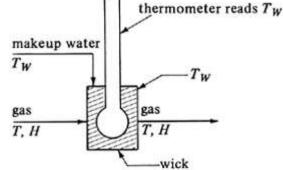
(a) The adiabatic saturation curve through this point is followed upward to the left until it intersects the 90 % line at 42.5 °C and H = $0.0500 \text{ kg H}_2\text{O/kg}$ dry air.

(b) The same line is followed to 100 % saturation, where T = 40.5 °C and H = 0.0505 kg H₂O/kg dry air.

Example 9.3-2 ^{2/2}



Wet bulb temperature T_W



- Steady-state non-equilibrium temperature reached when a small amount of water is contacted under adiabatic conditions by a continuous stream of gas.

- Steady state temp. attained by a wet-bulb thermometer under standardized condition.

- The temperature and humidity of the gas are not changed.
- At $T_W = T_S$, the convective heat transfer and wet bulb lines.

$$q = M_B k_y \lambda_W (H_W - H) A$$

or,

$$\frac{H - H_W}{T - T_W} = -\frac{h/M_B k_y}{\lambda_W}$$

 M_B is the molecular weight of air λ_W is the latent heat of vaporization at T_W k_y is the mass-transfer coefficient Tw: wet bulb temperature

$$q = h(T - T_W)A$$

The operating line

$$G(H_y - H_{yl}) = Lc_L (T_L - T_{Ll})$$

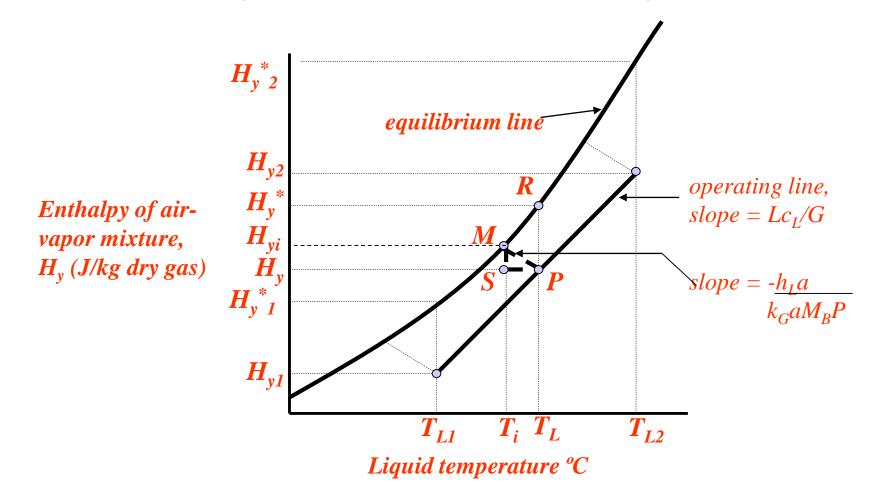
where,

- $G = dry air flow, kg/s.m^2$.
- L = water flow, kg water/s.m²
- c_L = heat capacity of water, assumed constant at 4187 kJ/kg.K.
- T_L = temperature of water, °C or K.
- H_v = enthalpy of air-water vapor mixture, J/kg air.

 $= c_s (T-T_0) + H\lambda_0 = (1.005 + 1.88H)10^3 (T-0) + 2.501x10^6H$

H = humidity of air, kg water/kg dry air.

Figure 10.5-3: Temperature enthalpy diagram and operating line for water-cooling.



Design of Water-Cooling Tower Using Film Mass-Transfer Coef.

***** Please follow the steps mentioned in section 10.5C in book

• To calculate the tower height

$$\int_{0}^{z} dz = z = \frac{G}{M_{B}k_{G}aP} \int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{yi} - H_{y}}$$

where,

z = tower height

P = atm pressure.

 M_B = molecular weight of air

 $k_Ga =$ volumetric mass transfer coeff. in gas, kg mol/s.m³.Pa

Design Using Overall Mass-Transfer Coefficients.

$$\int_{0}^{z} dz = z = \frac{G}{M_{B}K_{G}aP} \int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{y}} \frac{dH_{y}}{H_{y}}$$

where,

 $K_Ga = overall mass transfer coefficient.$

 If experimental cooling data in an actual run in a cooling tower with known height z are available, then the value of K_Ga can be obtained.

Table 10.5-1

	Table 1	0.5-1. Enthalp		l Air–V eratur		apor Mixtures	(0°C Base
		Hx				Hx	
TL		btu	J	TL		btu	J
°F	°C	<u>lb_m dry air</u>	kg dry air	°F	°C	<u>lb_m dry air</u>	kg dry air
60	15.6	18.78	43.68 x 10 ³	100	37.8	63.7	148.2 x 10 ³
80	26.7	36.1	84.0 x 10 ³	105	40.6	74.0	172.1 x 10 ³
85	29.4	41.8	97.2 x 10 ³	110	43.3	84.8	197.2 x 10 ³
90	32.2	48.2	112.1 x 10 ³	115	46.1	96.5	224.5 x 10 ³
95	35.0	55.4	128.9 x 10 ³	140	60.0	198.4	461.5 x 10 ³

Example 10.5-1 ^{1/7}

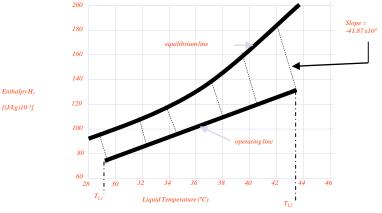
Design of Water-Cooling Tower Using Film Coefficients.

A packed countercurrent water-cooling tower using a gas flow rate of G = 1.356 kg dry air/s. m² and a water flow rate of L = 1.356 kg water/s. m² to cool the water from $T_{L2} = 43.3$ °C to $T_{L1} = 29.4$ °C.

The entering air at 29.4 °C has a wet bulb temperature of 23.9 °C . The mass-transfer coefficient k_G a is estimated as 1.207 x 10⁻⁷ kg mol/s.m³.Pa and h_L a / k_G aM_BP as 4.187 x 10⁴ J/kg.K.

Calculate the height of packed tower **z**. The tower operates at a pressure of 1.013×10^5 Pa.

Example 10.5-1 ^{2/7} Solution



Following the step outlined

- 1. The enthalpies from the saturated air-water vapor mixtures from Table 10.5-1 are plotted in Fig. 10.5-4.
- 2. The inlet air at $T_{G1} = 29.4$ °C has a wet bulb temperature of 23.9 °C preparation to be used in
 - The humidity from the humidity chart is $H_1 = 0.0165 \text{ kg } H_2 \text{O/kg}$ 3. dry air.
 - 4. Substituting into Eq.(9.3-8),

$$\begin{split} H_{y1} &= c_s \left(T - T_0 \right) + H\lambda_0 = (1.005 + 1.88H) \ \mathbf{10^3} \left(T - T_0 \right) + H\lambda_0 \\ H_{y1} &= (1.005 + 1.88 \text{ x } 0.0165) 10^3 \left(29.4 - 0 \right) + 2.501 \text{ x } 10^6 (0.0165). \\ &= \mathbf{71.7 \ x \ 10^3 \ J/kg.} \end{split}$$

The point $H_{v1} = 71.7 \times 10^3$ and $T_{L1} = 29.4$ °C is plotted. Then substituting into Eq. (10.5-2) and solving,

Data equation (9.3.8)

Example 10.5-1 ^{3/7}

$$\begin{split} G(H_{y2}-H_{y1}) &= Lc_L \; (T_{L2}-T_{L1}) \\ 1.356 \; (H_{y2}-71.7 \; x \; 10^3) &= 1.356 \; (4.187 \; x \; 10^3) \; (43.3-29.4). \\ H_{y2} &= 129.9 \; x \; 10^3 \, J/kg \; dry \; air. \end{split}$$

Now both H_{y1} and H_{y2} are calculated

Then

(1) The point $H_{y2} = 129.9 \text{ x } 10^3$ and $T_{L2} = 43.3 \text{ °C}$ is plotted, giving the operating line.

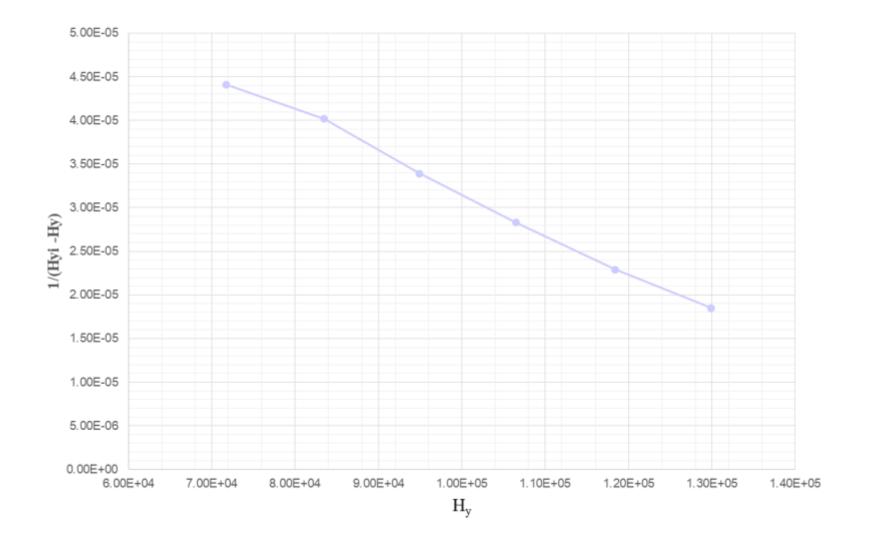
(2) Lines with slope - $h_L a / k_G a M_B P = -41.87 \times 10^3 J/kg.K$ are plotted giving H_{yi} and H_y values, which are tabulated in Table 10.5-2 along with derived values as shown.

(3) Values of $1/(H_{yi} - H_y)$ are plotted versus H_y and the area under the curve from $H_{y1} = 71.7 \text{ x } 10^3$ to $H_{y2} = 129.9 \text{ x } 10^3$ is

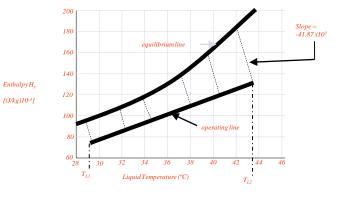
$$\int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{yi} - H_{y}} = 1.82$$

24

Example 10.5-1 ^{4/7}



Example 10.5-1 5/7



Substituting into Eq. (10.5-13),

$$z = \frac{G}{M_B k_G a P} \int \frac{dH_y}{H_{yi} - H_y} = \frac{1.356}{29(1.207 \times 10^{-7})(1.013 \times 10^5)} (1.82)$$

$$\therefore z = 6.98m$$

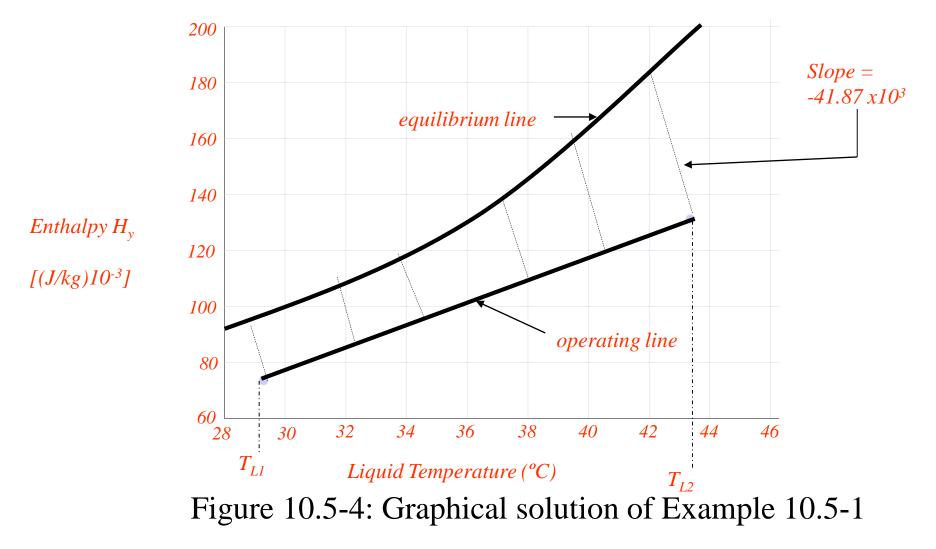
 $\int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{yi} - H_{y}} = 1.82$

Example 10.5-1 ^{6/7}

H _{yi}	H _y	$H_{yi} - H_y$	$1/(H_{yi} - H_y)$
94.4 x 10 ³	71.7 x 10 ³	22.7 x 10 ³	4.41 x 10 ⁻⁵
$108.4 \ge 10^3$	83.5 x 10 ³	24.9 x 10 ³	4.02 x 10 ⁻⁵
124.4 x 10 ³	94.9 x 10 ³	29.5 x 10 ³	3.39 x 10 ⁻⁵
141.8 x 10 ³	$106.5 \ge 10^3$	35.3×10^3	2.83 x 10 ⁻⁵
162.1 x 10 ³	118.4 x 10 ³	43.7 x 10 ³	2.29 x 10 ⁻⁵
184.7 x 10 ³	129.9×10^3	54.8 x 10 ³	1.85 x 10 ⁻⁵

Table 10.5-2: Enthalpy Values for Solution to Example 10.5-1 (enthalpy in J/kg dry air).

Example 10.5-1 7/7



Minimum Value of Air Flow ^{1/2}

- The air flow G is not fixed but must be set for the design of the cooling tower.
- ✤ For a minimum value of G, the operating line MN is drawn through the point H_{y1} and T_{L1} with a slope that <u>touches</u> the equilibrium line at T_{L2} , point N.
- If the equilibrium line is quite curved, line MN could become tangent to the equilibrium line at a point farther down the equilibrium line than point N.
- ✤ For the actual tower, a value of G greater than G_{min} must be used. Often, a value of G equal to 1.3 to 1.5 times G_{min} is used.

 $slope = Lc_I/G_{min}$

 $slope = Lc_1/G$

 T_{I2}

eauilibriu

 T_{LI}

Minimum Value of Air Flow ^{2/2}

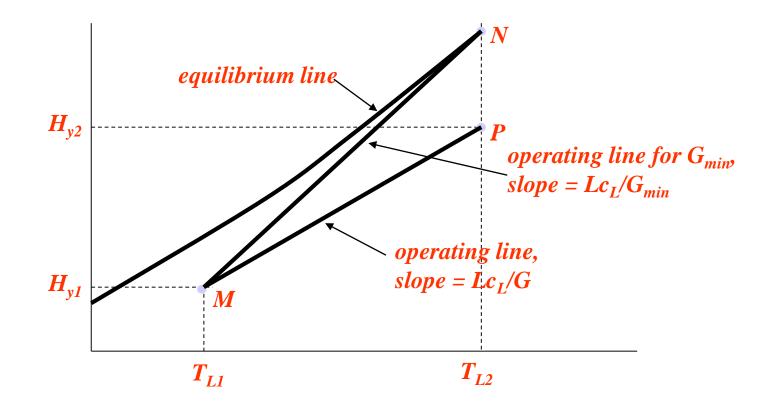


Figure 10.5-5: Operating-line construction for minimum gas flow.