

1 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

 كــــــــلــيــة الــــتـقـنـيــــــــات الـصــحـيـة والــطــبـيـــة

 ةـــيــــــذكـــة الـيـبـطــــة الــــمــــظـــم الانــــــــــســق

Intelligent Medical Systems Department

Lecture: (1)

Arrays in Python

Subject: Data Structure Lab.
Class: Second
Lecturer: Asst. Prof. Mehdi Ebady Manaa
 Asst. Lec. Sajjad Ibrahim Ismael

2 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Why use Arrays in Python?

A combination of Arrays, together with Python could save you a lot of time. As

mentioned earlier, arrays help you reduce the overall size of your code,

while Python helps you get rid of problematic syntax, unlike other languages.

For example: If you had to store integers from 1-100, you won’t be able to

remember 100 variable names explicitly, therefore, you can save them easily using

an array.

Now that you are aware of the importance of arrays in Python, let’s study more

about it in detail.

What is an Array in Python?

An array is basically a data structure which can hold more than one value at a

time. It is a collection or ordered series of elements of the same type.

Example:

a=array.array('d',[1.2,1.3,2.3])

3 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Now, there is always a question that comes up to our mind –

Is Python list same as an Array?

Python Arrays and lists are store values in a similar way. But there is a key

difference between the two i.e the values that they store. A list can store any type

of values such as intergers, strings, etc. An arrays, on the other hand, stores single

data type values. Therefore, you can have an array of integers, an array of strings,

etc.

Creating an Array in Python:

Arrays in Python can be created after importing the array module as follows –

→ import array as array

The array(data type, value list) function takes two parameters, the first being

the data type of the value to be stored and the second is the value list. The data type

can be anything such as int, float, double, etc. Please make a note that array is the

alias name and is for ease of use. You can import without alias as well.

 There is another way to import the array module which is –

→ from array import *

This means you want to import all functions from the array module.

The following syntax is used to create an array.

Syntax:

import array as array

a=array.array(data type,value list) #when you import using array alias

OR

from array import *

a=array(data type,value list) #when you import using *

Example: a=array.array(‘d’ , [1.1 , 2.1 ,3.1])

Here, the first parameter is ‘d’ which is a data type i.e. float and the values are

specified as the next parameter.

4 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Note:

All values specified are of the type float. We cannot specify the values of different

data types to a single array.

The following table shows you the various data types and their codes.

Type code Python Data Type C Type Byte size

I int Signed int 2

I int Unsigned int 2

U unicode character Py_UNICODE 2

H int Signed short 2

H int Unsigned short 2

L int Signed long 4

L int Unsigned log 4

F float Float 4

D float Double 8

Accessing array elements in Python :

To access array elements, you need to specify the index values. Indexing starts at 0

and not from 1. Hence, the index number is always 1 less than the length of the

array.

Example:

import array as array

a=array.array('d', [1.1 , 2.1 ,3.1])

print(a[1])

Output –

2.1

The output returned is the value, present at the second place in our array which is

2.1.

5 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Basic array operations:

There are many operations that can be performed on arrays which are as follows –

Finding the Length of an Array

Length of an array is the number of elements that are actually present in an

array. You can make use of len() function to achieve this. The len() function

returns an integer value that is equal to the number of elements present in that

array.

Syntax:

→ len(array_name)

Example:

import array as array

a=array.array('d', [1.1 , 2.1 ,3.1])

print(len(a))

Output –

2.1

This returns a value of 3 which is equal to the number of array elements.

6 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Adding/ Changing elements of an Array:

We can add value to an array by using the append(), extend() and the insert

(i,x) functions.

The append() function is used when we need to add a single element at the end of

the array.

Example:

import array as array

a=array.array('d', [1.1 , 2.1 ,3.1])

a.append(3.4)

print(a)

Output –

array(‘d’, [1.1, 2.1, 3.1, 3.4])

The resultant array is the actual array with the new value added at the end of it. To

add more than one element.

you can use the extend() function. This function takes a list of elements as its

parameter. The contents of this list are the elements to be added to the array.

Example:

import array as array

a=array.array('d', [1.1 , 2.1 ,3.1])

a.extend([4.5,6.3,6.8])

print(a)

Output –

array(‘d’, [1.1, 2.1, 3.1, 4.5, 6.3, 6.8])

The resulting array will contain all the 3 new elements added to the end of the

array.

7 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

However, when you need to add a specific element at a particular position in the

array, the insert(i,x) function can be used. This function inserts the element at the

respective index in the array. It takes 2 parameters where the first parameter is the

index where the element needs to be inserted and the second is the value.

Example:

import array as array

a=array.array('d', [1.1 , 2.1 ,3.1])

a.insert(2,3.8)

print(a)

Output –

array(‘d’, [1.1, 2.1, 3.8, 3.1])

The resulting array contains the value 3.8 at the 3rd position in the array.

Arrays can be merged as well by performing array concatenation.

Array Concatenation:

Any two arrays can be concatenated using the + symbol.

import array as array

a=array.array('d',[1.1 , 2.1 ,3.1,2.6,7.8])

b=array.array('d',[3.7,8.6])

c=array.array('d')

c=a+b

print("Array c = ",c)

Output –

Array c= array(‘d’, [1.1, 2.1, 3.1, 2.6, 7.8, 3.7, 8.6])

The resulting array c contains concatenated elements of arrays a and b.

8 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Removing/ deleting elements of an array:

Array elements can be removed using pop() or remove() method. The difference

between these two functions is that the former returns the deleted value whereas

the latter does not.

The pop() function takes either no parameter or the index value as its parameter.

When no parameter is given, this function pops() the last element and returns it.

When you explicitly supply the index value, the pop() function pops the required

elements and returns it.

import array as array

a=array.array('d', [1.1, 2.2, 3.8, 3.1, 3.7, 1.2, 4.6])

print(a.pop())

print(a.pop(3))

Output –

4.6

3.1

The first pop() function removes the last value 4.6 and returns the same while the

second one pops the value at the 4th position which is 3.1 and returns the same.

The remove() function, on the other hand, is used to remove the value where we do

not need the removed value to be returned. This function takes the element value

itself as the parameter. If you give the index value in the parameter slot, it will

throw an error.

import array as array

a=array.array('d',[1.1 , 2.1 ,3.1])

a.remove(1.1)

print(a)

Output –

array(‘d’, [2.1,3.1])

When you want a specific range of values from an array, you can slice the array to

return the same, as follows.

9 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

Slicing an array:
An array can be sliced using the : symbol. This returns a range of elements that we

have specified by the index numbers.

Example:

import array as array

a=array.array('d',[1.1 , 2.1 ,3.1,2.6,7.8])

print(a[0:3])

Output –

array(‘d’, [1.1, 2.1, 3.1])

The result will be elements present at 1st, 2nd and 3rd position in the array.

Looping through an array:

Using the for loop, we can loop through an array.

Example:

import array as array

a=array.array('d', [1.1, 2.2, 3.8, 3.1, 3.7, 1.2, 4.6])

print("All values")

for x in a:

 print(x)

print("specific values")

for x in a[1:3]:

 print(x)

Output –

All values

1.1

2.2

3.8

3.1

10 | P a g e

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

D a t a S t r u c t u r e L a b – S e c o n d S t a g e 2 0 2 2 - 2 0 2 3

3.7

1.2

4.6

specific values

2.2

3.8

The above output shows the result using for loop. When we use for loop without

any specific parameters, the result contains all the elements of the array given one

at a time. In the second for loop, the result contains only the elements that are

specified using the index values. Please note that the result does not contain the

value at index number 3.

Looping through an array using while loop

Example:

import array as array

a=array.array('d', [1.1, 2.2, 3.8, 3.1, 3.7])

b=0

while b<len(a) :

 print(a[b])

 b=b+1

Output –

1.1

2.2

3.8

3.1

3.7

