

 Computer Skills & Computing for BME I Reem Salah

1

Introduction to MATLAB

MATLAB’s Power of Computational Mathematics

 Computer Skills & Computing for BME I Reem Salah

2

1. **What is MATLAB?**

MATLAB, which stands for(MATrix LABoratory), is a high-level programming

language and interactive environment developed by MathWorks. It is widely used

by engineers, scientists, and researchers for numerical analysis, data processing,

algorithm development, and modeling and simulation of complex systems.

MATLAB is a powerful tool with a wide range of applications. Its strength lies not

just in its core functionality, but also in the rich ecosystem of toolboxes and

extensions that cater to specialized needs. Whether you're a student, a researcher, or

a professional, MATLAB offers tools that can streamline your work and enhance

your capabilities.

2. **Key Features:**

1. **Matrix Operations**: As its name suggests, MATLAB excels in matrix and

vector operations, making it particularly useful for linear algebra and other

mathematical computations.

 2. **Toolboxes**: MATLAB offers specialized toolboxes for various applications,

from signal processing and control systems to financial modeling and image

processing.

 Computer Skills & Computing for BME I Reem Salah

3

3. **Simulink**: An additional product from MathWorks, Simulink provides a

graphical environment for modeling, simulating, and analyzing multidomain

dynamical systems.

4. **Visualization**: MATLAB provides a wide range of tools to visualize data,

from simple plots and charts to complex 3D visualizations.

5. **Interfacing**: You can interface MATLAB with other languages such as C,

C++, and Java, making it a versatile tool for integrating with other platforms and

technologies.

3. **Applications of MATLAB:**

1. **Engineering**: Modeling and simulation of systems, control system design,

and hardware-in-the-loop testing.

2. **Data Science**: Data analysis, preprocessing, and visualization.

3. **Finance**: Quantitative research, risk management, and algorithmic trading.

4. **Biosciences**: Modeling biological processes, analyzing medical images, and

genomics research.

5. **Education**: Teaching complex engineering and mathematical concepts.

4. **Getting Started with MATLAB:**

Once you've installed MATLAB, you'll be greeted by its integrated development

environment (IDE). The primary components include:

1. **Command Window**: Where you can enter commands and see their output

instantly.

2. **Editor**: A feature-rich environment to write, debug, and execute MATLAB

scripts and functions.

3. **Workspace**: Displays the variables currently in memory.

4. **Plots and Figures**: Visualize data and results.

5. To begin, you can simply type mathematical expressions into the Command

Window, such as `2 + 3`, and MATLAB will immediately display the result.

 Computer Skills & Computing for BME I Reem Salah

4

5. Simple Math of Matlab

1. **Addition**:

 - This operation sums two numbers or matrices. In MATLAB, the "+" operator is

used for addition.

 - For matrices, addition is element-wise, meaning that each element in the first

matrix is added to the corresponding element in the second matrix.

2. **Subtraction**:

 - This operation finds the difference between two numbers or matrices. In

MATLAB, the "-" operator is used for subtraction.

 - Like addition, matrix subtraction is also element-wise.

3. **Multiplication**:

 - For scalar values, this operation multiplies two numbers together.

 Computer Skills & Computing for BME I Reem Salah

5

 - For matrices, the "*" operator performs matrix multiplication, which is different

from element-wise multiplication. The number of columns in the first matrix should

match the number of rows in the second matrix for the multiplication to be valid.

4. **Left Division (Backslash)**:

 - Represented by the "\" operator in MATLAB, left division is used to solve

systems of linear equations of the form \(AX = B \) for \(X \) by \(X = A\backslash

B \).

5. **Right Division (Forward Slash)**:

 - Represented by the "/" operator in MATLAB, right division is the equivalent of

multiplying the left operand by the inverse of the right operand. It's used to solve \(

XB = A \) for \(X \) by \(X = A/B \).

6. **Exponentiation**:

 - This operation raises a number (or matrix) to a power. In MATLAB, the "^"

operator is used for exponentiation.

 - For matrices, this operation raises the matrix to an integer power.

This table provides a concise overview of basic arithmetic operations in MATLAB
along with their syntax and examples.

 Computer Skills & Computing for BME I Reem Salah

6

6. Creating MATLAB Variables

MATLAB variables are created with an assignment statement. The syntax of

variable assignment is:

variable name = a value (or an expression)

For example,

>> x = expression

where expression is a combination of numerical values, mathematical operators,

variables, and function calls.

 Computer Skills & Computing for BME I Reem Salah

7

On other words, expression can involve:
1. Manual entry

2. Built-in functions (Ready Matlab functions).
3. User-defined functions

Once a variable has been created, it can be reassigned. In addition, if you do not wish

to see the intermediate results, you can suppress the numerical output by putting a

semicolon (;) at the end of the line.

7. Error Messages

In MATLAB, when something goes wrong in your code, the environment often

provides an error message to help you diagnose and fix the issue. These error

messages can be invaluable for debugging. Here are some common MATLAB error

messages, their meanings, and potential solutions:

1. **Undefined function or variable**:

 - **Meaning**: MATLAB cannot find a function or variable with the specified

name.

 - **Solution**: Check for typos in the function or variable name. Ensure that any

custom functions are in the MATLAB path or the current directory.

2. **Matrix dimensions must agree**:

 - **Meaning**: You're trying to perform an operation (like addition) on two

matrices that don't have the same dimensions.

 - **Solution**: Ensure that matrices being operated on together have the

appropriate dimensions. For element-wise operations, use `.*`, `./`, etc.

3. **Subscripted assignment dimension mismatch**:

 - **Meaning**: You're trying to assign a matrix or vector of one size to a matrix

or vector of a different size.

 - **Solution**: Ensure that the source and destination matrices/vectors have the

same dimensions.

9. **Undefined operator '<operator>' for input arguments of type '<type>'**:

 - **Meaning**: You're trying to use an operator with a data type that doesn't

support it.

 Computer Skills & Computing for BME I Reem Salah

8

 - **Solution**: Ensure that the data types you're working with support the

operator you're trying to use.

10. **Unable to read file '<filename>': no such file or directory**:

 - **Meaning**: MATLAB can't find the file you're trying to read.

 - **Solution**: Ensure the file path is correct and that the file exists.

These are just a few of the many error messages you might encounter in MATLAB.

When you receive an error message, it's crucial to read it carefully, as it often

provides hints or clear indications about what went wrong and how to fix it. If you're

unsure about the meaning of an error message, the MATLAB documentation and

community forums can be excellent resources for finding solutions.

8. Making Corrections

 In MATLAB, "making corrections" generally refers to the process of identifying,

diagnosing, and fixing errors in your code. This process is integral to programming

and involves several steps and tools provided by MATLAB. Here's a breakdown:

1. **Reading Error Messages**:

 - When MATLAB encounters an error in your code, it typically throws an error

message in the Command Window. This message often provides information about

the nature and location of the error.

 - Always read these messages carefully. They often provide a clear indication of

what went wrong.

2. **Using the Debugger**:

 - MATLAB's integrated debugger allows you to set breakpoints, step through your

code line by line, inspect variables, and more. This is invaluable for understanding

the flow of your code and identifying where things go awry.

 - To set a breakpoint, simply click next to a line number in the Editor. When you

run the script, MATLAB will pause execution at this line, allowing you to step

through the code.

3. **Inspecting Variables**:

 - Using the Workspace pane, you can view all current variables and their values.

This can be useful for ensuring variables contain the values you expect.

 Computer Skills & Computing for BME I Reem Salah

9

 - You can also use the `whos` command to get an overview of all variables and

their types.

4. **Visualizing Data**:

 - Sometimes, plotting your data can provide insights into potential issues. For

instance, if a plot doesn't look right, it might indicate a problem with how you're

processing or generating data.

5. **Using the Profiler**:

 - MATLAB's Profiler tool can analyze your code's performance, helping identify

bottlenecks or areas that might be causing unexpected behavior.

 - To use the Profiler, you can select "Run and Time" from the Editor's "Run" tab

or use the `profile on` and `profile off` commands.

6. **Correcting Errors**:

 - Once you've identified the source of an error, you'll need to make corrections in

the MATLAB Editor. This might involve fixing a typo, changing a variable name,

rewriting a problematic section of code, etc.

 - After making your corrections, always re-run your code to ensure the error has

been resolved and no new errors have been introduced.

7. **Seeking External Help**:

 - If you're stuck on a particularly challenging error, don't hesitate to seek help. The

MATLAB community, including the MathWorks website and various online forums,

can be valuable resources.

 - When seeking help, always provide a clear description of your problem, any error

messages you're seeing, and a minimal example of your code that reproduces the

issue.

In summary, making corrections in MATLAB involves a combination of

understanding error messages, using the built-in debugging and profiling tools, and

sometimes seeking help from the broader community. Debugging is a skill that

improves with practice, so the more you work with MATLAB and encounter

different challenges, the better you'll become at diagnosing and fixing issues.

9. Entering Multiple Statements per Line

 Computer Skills & Computing for BME I Reem Salah

10

In MATLAB, you can enter multiple statements on a single line by separating each

statement with a comma (`,`). This can be useful for writing concise code or for

executing multiple commands in a single line in the Command Window.

Here's how you can do it:

Example:

```matlab 

a = 5, b = 10, c = a + b 

When you run the above line, MATLAB will: 

1. Assign the value `5` to the variable `a`. 

2. Assign the value `10` to the variable `b`. 

3. Sum `a` and `b` and assign the result to `c`. 

All of these operations will be executed sequentially on the same line. 

**Note**:  

- While entering multiple statements on one line can be useful in some cases, 

overusing this feature can make your code harder to read. It's generally 

recommended to use separate lines for separate statements, especially when writing 

scripts or functions, to maintain readability. 

- If you want to execute a statement without displaying the result in the Command 

Window, you can end the statement with a semicolon (`;`). For example: `a = 5; b = 

10, c = a + b` will only display the result for `c` and not for `a` and `b`. 

 

10.  Miscellaneous Commands 
In MATLAB, there are numerous commands and functions that serve a variety of 

purposes, from managing the environment to obtaining information about variables. 

Here's a list of some miscellaneous yet useful commands: 

 

1. **Managing the Workspace**: 

   - `clear`: Removes all variables from the workspace. 

   - `clc`: Clears the Command Window. 

   - `close all`: Closes all open figure windows. 



 

 

 Computer Skills & Computing for BME I                                                                   Reem Salah  

 
11 

   - `who`: Lists all the variables in the current workspace. 

   - `whos`: Provides a detailed list of all variables in the workspace, including size, 

bytes, class, and attributes. 

   - `save`: Saves the current workspace variables to a `.mat` file. 

   - `load`: Loads variables from a `.mat` file into the workspace. 

 

2. **Command History**: 

   - `history`: Shows the command history in the Command Window. 

   - `completenames`: Completes partial function or variable names in the 

Command Window. 

 

3. **MATLAB Environment**: 

   - `pwd`: Displays the current working directory. 

   - `cd`: Changes the current directory. 

   - `dir`: Lists all files and folders in the current directory. 

   - `path`: Displays the current search path. 

   - `addpath`: Adds a folder to the search path. 

   - `rmpath`: Removes a folder from the search path. 

 

4. **Information and Documentation**: 

   - ̀ lookfor`: Searches for a keyword in the first comment line of all MATLAB files. 

   - `help`: Displays help text for a function or topic. 

   - `doc`: Opens the MATLAB documentation for a specified function or topic. 

   - `version`: Returns the MATLAB version number. 

   - `license`: Returns license number or checks the status of a specific toolbox. 

 

5. **Timing and Performance**: 

   - `tic` and `toc`: Used to measure the time taken for code execution. `tic` starts the 

timer, and `toc` stops it and displays the elapsed time. 

   - `profile`: Helps in analyzing code performance. 

 

6. **Handling Errors and Warnings**: 

   - `lasterr`: Returns the last error message. 

   - `warning`: Displays a warning message or controls the state of warnings. 

   - `error`: Displays an error message and stops function execution. 

 

7. **User Input and Output**: 



 

 

 Computer Skills & Computing for BME I                                                                   Reem Salah  

 
12 

   - `input`: Prompts the user for input. 

   - `disp`: Displays text or values in the Command Window. 

   - `fprintf`: Formats and prints data to the Command Window or a file. 

 

8. **Graphics and Plotting**: 

   - `figure`: Creates a new figure window. 

   - `hold on/off`: Allows multiple plots to be overlaid on the same axes or resets 

plotting to the default behavior. 

 

9. **MATLAB Interface and Preferences**: 

   - `preferences`: Opens the MATLAB preferences dialog. 

   - `beep`: Makes a beep sound. 

This list is by no means exhaustive, but it provides an overview of some of the 

diverse commands available in MATLAB for various tasks and operations. Always 

refer to MATLAB's official documentation or use the `help` function for 

comprehensive details on any command. 


