

Analogue Electronic

Prof. Dr. Ehssan Al-Bermany

ihsan.zia@uomus.edu.iq

1st semester

Chapter Two Diode and its Application

Lecture 5

© Prof. Dr. Ehssan Al-Bermany.

2

Full wave rectifiers

Although half-wave rectifiers have some applications, the full-wave rectifier is the most commonly used type in **DC power supplies**.

A full-wave rectifier **allows** unidirectional (one-way) current through the load during the entire of the input cycle.

Whereas a **half-wave rectifier** allows current through the load only during one-half of the cycle.

The output voltage have twice the input frequency. $V_{AVG} = 2V_P/\pi = V_{AVG}$ is approximately 63.7 % of Vp

Center-Tapped Full-Wave Rectifier Operation

A center-tapped rectifier uses two diodes connected to the secondary of a center-tapped transformer, as shown in Figure 1.

Figure 1: Basic operation of a center-tapped full-wave rectifier.

(b) During negative half-cycles, D_2 is forward-biased and D_1 is reverse-biased.

The Bridge Full-wave rectifiers

The Bridge Full-Wave rectifier uses **four diodes** connected across the entire secondary, as shown in Figure below.

(a) During the positive half-cycle of the input, D₁ and D₂ are forward-biased and conduct current. D₃ and D₄ are reverse-biased.

(b) During the negative half-cycle of the input, D₃ and D₄ are forward-biased and conduct current. D₁ and D₂ are reverse-biased.

Diode Limiters

Diode circuits, called **limiters or clippers**, are used to **clip off portions of signal voltages above** or **below certain levels**.

Point A is limited to +0.7V when the input voltage exceeds this value (Figure 3(a)).

If the diode is **turned around**, as in Figure 3(b), the negative part of the input voltage is clipped off. When the diode is forward-biased during the negative part of the input voltage, **point A** is held at -0.7V by the diode drop.

Figure 3: Examples of diode limiters (clippers).

(a) Limiting of the positive alternation. The diode is forward-biased during the positive alternation (above 0.7 V) and reverse-biased during the negative alternation.

 $R_L \gtrsim$

(b) Limiting of the negative alternation. The diode is forward-biased during the negative alternation (below -0.7 V) and reverse-biased during the positive alternation.

A **power supply** or **voltage divider** can attain the desired amount of **limitation.**

The amount clipped can be adjusted with different levels of V_{BIAS} .

The peak output voltage across $\mathbf{R}_{\mathbf{L}}$ is determined by the following equation:

$$V_{out} = \left(\frac{R_L}{R_1 + R_L}\right) V_{in}$$

Example 2: What would you expect to see displayed on an oscilloscope connected across R_L in the limiter shown in the following Figure/

Solution: The diode is forward-biased and conducts when the input voltage goes below -0.7V. So, for the negative limiter, determine the peak output voltage across R_L by.

$$= \left(\frac{R_L}{R_1 + R_L}\right) V_{in} = \left(\frac{100 \mathrm{k}\Omega}{110 \mathrm{k}\Omega}\right) 10\mathrm{V} = 9.09\mathrm{V}$$

The scope will display an output waveform as shown in following Figure

Diode Clampers

Another type of diode circuit, called **a clamper**, is used to **add or restore a dc level to an electrical signal**.

The capacitor charges to the peak of the supply minus the diode drop. Once charged the capacitor acts like a battery in series with the input voltage.

The AC voltage will "ride" along with the DC voltage. The polarity arrangement of the diode determines whether the DC voltage is negative or positive. V_{pear} -0.7V

Voltage Multiplier

Voltage multipliers use clamping action to increase peak rectified voltages without the necessity of increasing the transformer's voltage rating.

Multiplication factors of two, three, and four are common. Voltage multipliers are **used** in high-voltage, low-current applications such as cathode-ray tubes (CRTs) and particle accelerators.

In the Figure below, a **half-wave voltage doubler**, voltage doubler is a voltage multiplier with a multiplication factor of two.

Once C1 and C2 charge to the peak voltage, it acts like two batteries in series, effectively doubling the voltage output.

The current capacity for voltage multipliers is low.

The full-wave voltage doubler arrangement of diodes and capacitors takes advantage of positive and negative peaks to charge the capacitors, giving them more current capacity.

Voltage triplers and **quadruplers** utilize three and four-diode-capacitor arrangements, respectively.

Typical diode packages with terminal identification. The letter K is used for cathode to avoid confusion with certain electrical quantities that are represented by C. Case type numbers are indicated for each diode.