Example:
Determine the depth of boreholes required for the rectangular footings of a building of dimensions ($2 \times 3 \mathrm{~m}$) to be placed at a depth of 1.25 m . below ground surface if total and dry unit weights of soil are 19 and $14 \mathrm{kN} / \mathrm{m}$, respectively. The maximum expected column load is 800 KN . and the W.T. location is at foundation level.

Solution:
Q-1
for structural foundation:-
1- for single separate strip footing:-

$$
\begin{aligned}
\text { Depth } & =3 \times \text { width of footing } 76 \mathrm{~m} \\
& =3 \times 2=6 \mathrm{~m} \\
\therefore \text { depth of B.h } & =1.25+6=7.25 \mathrm{~m}
\end{aligned}
$$

or
2-The depth of the boreholes should extend to the point where the rectincreas in the stress due to the action of building is res than 10% of the total surface load.

$$
\begin{aligned}
& \frac{800}{(3+d)(4+d)}=0.1 \times \frac{800}{3 \times 4} \\
& 0.1(3+d)(4+d)=12 \\
& (3+d)(4+d)=120 \\
& \frac{d}{7} \frac{d i f}{+10} \\
& 8 \\
& 7.5 \\
& -12 \\
& -0.75 \quad 0 . k
\end{aligned}
$$

$$
\begin{aligned}
& \therefore d=7.5 \mathrm{~m} \\
& \therefore \text { depth of } 3 . A=1.25+7.5=8.75 \mathrm{~m} \\
& \therefore \text { dr }
\end{aligned}
$$

3-T The depth of borehole should extend to the point when the net increase in stress due to building $\left(\Delta q_{s}\right)$ is less than 5% of the overburden stress in soil.

$$
\begin{aligned}
& \overline{\sigma 0}_{0}=1.25 \times 14+d_{0}=17.5+9 d \\
& \frac{800}{(3+d)(4+d)}=0.05(17.5+9 d) \\
& (3+d)(4+d)(17.5+9 d)=16000 \\
& \frac{d}{9} \frac{d i f}{-634} \\
& 10+3565 \\
& 9.2 \quad 152 \quad 0.12 \\
& \therefore d=9.2 \mathrm{~m} \\
& \therefore \text { depth af B. tH }
\end{aligned}
$$

Q1- a- Site investigation is to be carried out on an inner city gap site which is being redeveloped for a six store building with a raft footing of $20 \times 30 \mathrm{~m}$ and at a depth of 2.0 m below N.G.L. The net applied pressure at the footing base is $100 \mathrm{kN} / \mathrm{m}^{2}$. Geological map show that the soil is of loose deposit with dry and submerged unit weight of 16.0 and $9.0 \mathrm{kN} / \mathrm{m}^{3}$ respectively Ground water table at a depth of 2.0 m below N.G.L. Outline a suitable site investigation project for this site, giving details of the boreholes (number, depth, and locations), insitue and laboratory test required.
b- For the soil profile shown in fig(1), calculate corrected S.P.T -N value at a depth of 20.0 m below N.G.L.
(20 Marks)
Fig (1)

$\alpha_{1} a_{-}$No. of Boreholes
Since Building area $=30 \times 20=600 \mathrm{~m}^{2} 7300 \mathrm{~m}^{2}$
Ss, Use 5 Boreholes

- layout: Use 4 Bit et the Goner and one B.H at the Center.
- Depth .6 B.H.C(z)

$$
\text { , } Z=2 \times B=2 * 20=40 \mathrm{~m} \text {. }
$$

2. 10% of $口$ q

$$
\begin{aligned}
0.1 \Delta q & =\frac{\Delta Q B \cdot L}{(B+Z)(L+Z)} \\
0.1 \times 100 & =\frac{100 * 20 \times 30}{(20+Z)(30+Z)} \\
z & =52.6 \mathrm{~m}
\end{aligned}
$$

3.25% of $P 0$

$$
\begin{gather*}
0.05 p_{0}^{\prime}=\frac{100 \times 20 \times 30}{(20+z)(30+z)} \\
P_{0}^{\prime}=16 \times 2+9 z=32+97 \\
0.05 \times(32+9 z)=\frac{100 \times 20 \times 30}{(20+z)(30+z} \\
z=42.3 \mathrm{~m} \tag{I}
\end{gather*}
$$

The optimum depth f Poreteles is:
$40+2=42 \mathrm{~m} \longrightarrow$ Use 45 m depth.

- Insitue Tests
- Standard Penetration Test (S.P.T)
- Plat loadTest
- Laborotary tests:

Gs, W_{c}, Aterberg Limits, Sieve and Hydrometer Analysis, odometer test, Unconfined Unconsolideticatest, U. U test Chemical test $\left(T_{s s}, P, t l, S_{O_{3}}, \mathrm{Cl}_{3}\right)$.
B -

$$
\begin{aligned}
N_{C r} & =15+0.5\left(N_{m}-15\right) \\
& =15+0.5(22-15)=18.5 \\
N_{c}= & C_{N} \times N \\
C_{W} & =0.776 \frac{2000}{P_{0}} \\
P_{0}^{\prime}= & 16 \times 7.5+10(19-10)+7.5(20-(0)=205 \mathrm{PPa} \\
C_{N} & =0.77 \log \frac{2000}{205}=0.761 \\
N_{C} & =0.761 \times 18.5=14
\end{aligned}
$$

