Reinforced Concrete Design of Shallow Foundations

Load Factors

According to ACI Code Section 9.2, depending on the type, the ultimate load-carrying capacity of a structural member should be one of the following:
$U=1.4 D$
$U=1.2 D+1.6 L$
where
$U=$ ultimate load-carrying capacity of a member
$D=$ dead loads
$L=$ live loads

Strength Reduction Factor

The design strength provided by a structural member is equal to the nominal strength times a strength reduction factor, ϕ or
Design strength $=\phi$ (nominal strength)
Following are some of the recommended values of f (ACI Code Section 9.3):

Condition	Value of $\boldsymbol{\phi}$	
a.	Axial tension; flexure with or without axial tension	0.9
b.	Shear or torsion	0.75
c. Axial compression with spiral reinforcement	0.75	
d. Axial compression without spiral reinforcement	0.65	
e.	Bearing on concrete	0.65
f.	Flexure in plain concrete	0.65

Design Concepts for a Rectangular Section in Bending

Figure A.1a shows a section of a concrete beam having a width b and a depth h. The assumed stress distribution across the section at ultimate load is shown in Figure A.1b.

The following notations have been used in this figure:
$f_{c}^{\prime}=$ compressive strength of concrete at 28 days
$A_{s}=$ area of steel tension reinforcement
$f_{y}=$ yield stress of reinforcement in tension
$d=$ effective depth
$l=$ location of the neutral axis measured from the top of the compression face $a=\beta l$
$\beta=0.85$ for f_{c}^{\prime} of $28 \mathrm{MN} / \mathrm{m}^{2}$ of less and decreases at the rate of 0.05 for every $7 \mathrm{MN} / \mathrm{m}^{2}$ increase of f_{c}^{\prime} However, it cannot be less than 0.65 in any case (ACI Code Section 10.2.7).

$$
0.85 f_{c}^{\prime} a b=A_{s} f_{y}
$$

or

$$
\begin{equation*}
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \tag{A.2}
\end{equation*}
$$

Figure A. 1 Rectangular section in heading

Figure 8-4 (a) Section for wide-beam shear; (b) section for diagonal-tension shear; (c) method of computing area A2 for allowable column bearing stress.

Also, for the beam section, the nominal ultimate moment can be given as

$$
\begin{equation*}
M_{n}=\operatorname{As} f_{y}\left(d-\frac{a}{2}\right) \tag{A.3}
\end{equation*}
$$

where $M_{n}=$ theoretical maximum resisting moment (Nominal moment).

The steel percentage is defined by the equation

$$
\rho=\frac{A_{s}}{b d}
$$

The nominal or theoretical shear strength of a section, V_{n}, can be given as

$$
\begin{equation*}
V_{n}=V_{c}+V_{s} \tag{A.9}
\end{equation*}
$$

where $V_{c}=$ nominal shear strength of concrete
$\mathrm{V}_{\mathrm{s}}=$ nominal shear strength of reinforcement
The permissible shear strength, V_{u}, can be given by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{u}}=\varnothing \mathrm{V}_{\mathrm{n}}=\varnothing\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}\right) \tag{A.10}
\end{equation*}
$$

The values of V_{c} can be given by the following equations (ACI Code Sections 11.2 and 11.11).
$\mathrm{V}_{\mathrm{c}}=0.17 \sqrt{f_{c}^{\prime}}$ bd \quad (for member subjected to shear and flexure) (A.11a)
And

$$
\begin{equation*}
\mathrm{V}_{\mathrm{c}}=0.33 \sqrt{f_{c}^{\prime}} \text { bd } \quad \text { (for member subjected to diagonal tension (punching shear)) } \tag{A.11b}
\end{equation*}
$$

where f_{c}^{\prime} is in $\mathrm{MN} / \mathrm{m}^{2}(\mathrm{MPa}), \mathrm{V}_{\mathrm{c}}$ is in MN, b and d are in m , and $\lambda=1$ for normal weight concrete.
Dowels are required if the column load exceeds the following:

$$
0.85 \phi f_{c}^{\prime} A_{1} \sqrt{A_{2} / A_{1}}
$$

The ratio $A_{2} / A_{1}<2$ and the ϕ factor is 0.65 . The area A_{1} is the column contact area $(b \times c)$; the area A_{2} is the base of the frustum that can be placed entirely in the footing as shown in Fig. 8-4c

Design Example of a Square Foundation for a Column

Figure A.3a shows a square column foundation with the following conditions:
Live load $=L=675 \mathrm{kN}$
Dead load $=D=1125 \mathrm{kN}$
Allowable gross soil-bearing capacity $=q_{\text {all }}=145 \mathrm{kN} / \mathrm{m}^{2}$
Column size $=0.5 \mathrm{mx} 0.5 \mathrm{~m}$
$f_{c}^{\prime}=20.68 \mathrm{MN} / \mathrm{m}^{2}$
$\mathrm{f}_{\mathrm{y}}=413.7 \mathrm{MN} / \mathrm{m}$
Let it be required to design the column foundation.

(d)

General Considerations

Let the average unit weight of concrete and soil above the base of the foundation be $21.97 \mathrm{kN} / \mathrm{m}^{3}$. So, the net allowable soil-bearing capacity

$$
q_{\text {all(net) }}=145-\left(D_{f}\right)(21.97)=145-(1.25)(21.97)=117.54 \mathrm{kN} / \mathrm{m}^{2}
$$

Hence, the required foundation area is

$$
A=B^{2}=\frac{D+L}{q_{\text {all(net) }}}=\frac{675+1125}{117.54}=15.31 \mathrm{~m}^{2}
$$

$$
B=\sqrt{A}=\sqrt{15.31}=3.91 \mathrm{~m}
$$

Use a foundation with dimensions (B) of 4 mx 4 m .
The factored load for the foundation is

$$
U=1.2 D+1.6 L=(1.2)(1125)+(1.6)(675)=2430 \mathrm{kN}
$$

Hence, the factored soil pressure is

$$
q_{s}=\frac{U}{B^{2}}=\frac{2430}{16}=151.88 \mathrm{kN} / \mathrm{m}^{2}
$$

Assume the thickness of the foundation to be equal to 0.75 m . With a clear cover of 76 m over the steel bars and an assumed bar diameter of 25 mm , we have

$$
d=0.75-0.076-\frac{0.025}{2}=0.6615 \mathrm{~m}
$$

Check for Shear

V_{u} should be equal to or less than $\phi V c$

$$
V_{u} \leq \phi(0.17) \sqrt{f_{c}^{\prime}} b d
$$

The critical section for one-way shear is located at a distance d from the edge of the column as shown in Figure A.3b. So

$$
V_{u}=q_{s} \mathrm{x} \text { critical area }=(151.88)(4)(1.75-0.6615)=661.3 \mathrm{kN}
$$

Also

$$
\phi V_{c}=(0.75)(0.17) \sqrt{20.68}(4)(0.6615)(1000)=1534.2 \mathrm{kN}
$$

So,

$$
V_{u}=661.3 \mathrm{kN}<\phi V c=1534.2 \mathrm{kN} \quad \text {-O.K. }
$$

For two-way shear, the critical section is located at a distance of $d / 2$ from the edge of the column. This is shown in Figure A.3b. For this case,

$$
\phi V_{c}=\phi(0.33) \sqrt{f_{c}^{\prime}} b_{o} d
$$

The term b_{o} is the perimeter of the critical section for two-way shear. Or for this design,

$$
b_{o}=4[0.5+2(d / 2)]=4[0.5+2(0.3308)]=4.65 \mathrm{~m}
$$

Hence,

$$
\phi V c=(0.75)(0.33) \sqrt{20.68}(4.65)(0.6615)=3.462 \mathrm{MN}=3462 \mathrm{kN}
$$

Also,

$$
V_{u}=\left(q_{s}\right)(\text { critical area })
$$

Critical area $=(4 \times 4)-(0.5+0.6615)^{2}=14.65 \mathrm{~m}^{2}$ So,

$$
\begin{aligned}
& V_{u}=(151.88)(14.65)=2225.18 \mathrm{kN} \\
& V_{u}=2225.18 \mathrm{kN}<\phi V c=3462 \mathrm{kN} \quad-\mathrm{O} . \mathrm{K} .
\end{aligned}
$$

The assumed depth of foundation is more than adequate.

Flexural Reinforcement

According to Figure A.3c, the moment at critical section (ACI Code Section 15.4.2) is

$$
\begin{aligned}
& M_{u}=\left(q_{s} B\right)\left(\frac{1.75}{2}\right)^{2}=\frac{[(151.88)(4)](1.75)^{2}}{2}=930.27 \mathrm{kN}-\mathrm{m} \\
& \phi M_{n} \geq M_{u} \\
& M_{n}=\frac{M_{u}}{\emptyset} \\
& M_{n}=930.27 / 0.9=1033.6 \mathrm{kN} . \mathrm{m}=1033 \times 10^{6} \mathrm{~N} . \mathrm{mm} \\
& \operatorname{Try} \alpha=0.2 \mathrm{~d}=0.2 \times 660=132 \mathrm{~mm} \\
& M_{n}=\operatorname{As} f_{y}\left(d-\frac{a}{2}\right) \\
& 1033 \times 10^{6}=\mathrm{A}_{\mathrm{s}} \times 413.7 \times(660-132 / 2) \\
& \mathrm{A}_{\mathrm{s}}=4203 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\rho=\frac{A_{S}}{b d} \quad=\frac{4203}{4000 \times 660}=0.00152
$$

$\rho_{\min }$ for footing $=0.0018>0.00152$
\therefore use $\rho_{\text {min }}$
Note: Use total footing thickness (h) when using $\rho_{\text {min }}$

$$
\therefore \quad \mathrm{A}_{\mathrm{s}}=\rho_{\min } x b \times h=0.0018 \times 4000 \times 750=5400 \mathrm{~mm}^{2}
$$

Provide 11 X 25-mm diameter bars each way $\left[A s=(491)(11)=5401 \mathrm{~mm}^{2}\right]$.

Check for Development Length (L_{d})

From ACI Code Section 12.2.2, for 25 mm diameter bars, $L_{d} \approx 50 \phi \approx 1250 \mathrm{~mm}$. Actual L_{d} provided is $(4-0.5 / 2)-0.076$ (cover) $=1.674 \mathrm{~m}>1.25 \mathrm{~m}-$ O.K.

Check for Bearing Strength

ACI Code Section 10.14 indicates that the bearing strength should be at least $0.85 \phi f_{c}^{\prime} A_{1} \sqrt{A_{2} / A_{1}}$ with a limit of $\sqrt{A_{2} / A_{1}} \leq 2$
for this problem,
$A_{2}=(b+4 d)(c+4 d)=(0.5+4 \times 0.66)(0.5+4 \times 0.66)=9.86$
$A_{l}=(b x c)=0.5 \times 0.5=0.25 \mathrm{~m}^{2}$
$\sqrt{A_{2} / A_{1}}=\sqrt{9.86 / 0.25}=6.28>2$
Take $\sqrt{A_{2} / A_{1}}=2$
Bearing strength $=0.85 \phi f_{c}^{\prime} A_{1} \sqrt{A_{2} / A_{1}}=(0.85)(0.65)(20.68)(0.5)^{2}(2)=5.71 \mathrm{MN}=5712 \mathrm{kN}$
The factored column load $\mathrm{U}=2430 \mathrm{kN}<5712 \mathrm{kN}$ - O.K.

Design Example of a Rectangular Foundation for a Column

This section describes the design of a rectangular foundation to support a column having dimensions of $0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ in cross section. Other details are as follows:

Dead load $=D=290 \mathrm{kN}$
Live load $=L=110 \mathrm{kN}$
Depth from the ground surface to the top of the foundation $=1.2 \mathrm{~m}$
Allowable gross soil-bearing capacity $=120 \mathrm{kN} / \mathrm{m}^{2}$
Maximum width of foundation $=B=1.5 \mathrm{~m}$
$f_{y}=413.7 \mathrm{MN} / \mathrm{m}^{2}$
$f_{c}^{\prime}=20.68 \mathrm{MN} / \mathrm{m}^{2}$
Unit weight of soil $=\gamma=17.27 \mathrm{kN} / \mathrm{m}^{3}$
Unit weight of concrete $=\gamma_{\mathrm{c}}=22.97 \mathrm{kN} / \mathrm{m}^{3}$

General Considerations

For this design, let us assume a foundation thickness of 0.45 m (Figure A.4a). The weight of foundation $/ \mathrm{m}^{2}=0.45 \gamma_{\mathrm{c}}=(0.45)(22.97)=10.34 \mathrm{kN} / \mathrm{m}^{2}$,
and the weight of soil above the foundation $/ \mathrm{m}^{2}=(1.2) \gamma=(1.2)(17.27)=20.72 \mathrm{kN} / \mathrm{m}^{2}$.
Hence, the net allowable soil bearing capacity $\left[q_{\text {net(all) }}\right]=120-10.34-20.72=88.94 \mathrm{kN} / \mathrm{m}^{2}$.
The required area of the foundation $\mathrm{A}=(D+L) / q_{\text {net (all) }}=(290+110) / 88.94=4.5 \mathrm{~m}^{2}$.
Hence, the length of the foundation is $\mathrm{A} / \mathrm{B}=4.5 \mathrm{~m}^{2} / \mathrm{B}=4.5 / 1.5=3 \mathrm{~m}$.
The factored column load $=1.2 D+1.6 L=1.2(290)+1.6(110)=524 \mathrm{kN}$.
The factored soil-bearing capacity, $q_{s}=$ factored load/foundation area $=524 / 4.5=116.44 \mathrm{kN} / \mathrm{m}^{2}$.

Shear Strength of Foundation

Assume that the steel bars to be used have a diameter of 16 mm . So, the effective depth

$$
d=450-76-16 / 2=366 \mathrm{~mm} . \quad \text { (Note that the assumed clear cover is } 76 \mathrm{~mm} \text {.) }
$$

Figure A.4a shows the critical section for one-way shear. According to this figure

$$
V_{u}=\left(1.5-\frac{0.4}{2}-0.366\right) B q_{s}=(0.934)(1.5)(116.44)=163.13 \mathrm{kN}
$$

The nominal shear capacity of concrete for one-way beam action

$$
V_{c}=0.17 \sqrt{f_{c}^{\prime}} B d=0.17 \sqrt{20.68}(1.5)(0.366)=0.4244 \mathrm{MN}=424.4 \mathrm{kN}
$$

Now

$$
V_{u}=163.13<\phi V_{c}=(0.75)(424.4)=318.3 \mathrm{kN} \quad-\mathrm{O} . \mathrm{K} .
$$

The critical section for two-way shear is also shown in Figure A.4a. This is based on the recommendations given by ACI Code. For this section
$V_{u}=q_{s}\left[(1.5)(3)-0.766^{2}\right]=455.66 \mathrm{kN}$
The nominal shear capacity of the foundation can be given as
$V_{c}=0.33 \sqrt{f_{c}^{\prime}} b_{o} d$
where $b_{o}=$ perimeter of the critical section
or
$V_{c}=(0.33) \sqrt{20.68}(4 \mathrm{x} 0.766)(0.366)=1.683 \mathrm{MN}$
So, for two-way shear condition
$V_{u}=455.66 \mathrm{kN}<\phi V c=(0.75)(1683)=1262.25 \mathrm{kN}$
Therefore, the section is adequate.

Figure A. 4 Rectangular foundation for a column

According to Figure A.4a, the design moment about the column face is

$$
\begin{aligned}
& M_{u}=\frac{\left(q_{s} B\right) 1.3^{2}}{2}=\frac{(116.44)(1.5)(1.3)^{2}}{2}=147.59 \mathrm{kN}-\mathrm{m}=147.59 \times 10^{6} \mathrm{~N} . \mathrm{mm} \\
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d-\frac{a}{2}\right)
\end{aligned}
$$

Try $\alpha=0.2 d=0.2 \times 0.366=0.073 \mathrm{~m}=73 \mathrm{~mm}$
$147.59 \times 10^{6}=0.9 \times \mathrm{A}_{\mathrm{s}} \times 413.7 \times(366-73 / 2)$
$\mathrm{A}_{\mathrm{s}}=1203 \mathrm{~mm}^{2}$

$$
\rho=\mathrm{A}_{\mathrm{s}} /(\mathrm{B} \mathrm{~d})=1203 /(1500 \times 366)=0.0219>\rho_{\min } \quad \text { O.K }
$$

use 6 No. 16 mm bars.

Flexural Reinforcement in the Short Direction

According to Figure A.4a, the moment at the face of the column is

$$
M_{u}=\frac{\left(q_{s} L\right)(0.55)^{2}}{2}=\frac{(116.44)(3)(0.55)^{2}}{2}=52.83 \mathrm{kN}-\mathrm{m}=52.83 \times 10^{6} \mathrm{~N} . \mathrm{mm}
$$

d in short direction $=450-76-16-16 / 2=350 \mathrm{~mm}$

$$
M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

Try $\alpha=0.2 d=0.2 \times 0.35=0.07 \mathrm{~m}=70 \mathrm{~mm}$
$52.83 \times 10^{6}=0.9 \times A_{s} \times 413.7 \times(350-70 / 2)$

$$
\begin{aligned}
& A_{s}=450 \mathrm{~mm}^{2} \\
& \rho=\mathrm{A}_{\mathrm{s}} /(\mathrm{B} \mathrm{~d})=450 /(3000 \times 350)=0.0004<\rho_{\min } \\
& \text { use } \rho_{\min }
\end{aligned}
$$

Important note: Use gross area when using $\rho_{\text {min }}$
$A_{s}=0.0018 \times 3000 \times 450=2430 \mathrm{~mm}^{2}$
Use 12 No. 16 mm bars

